Perpendicular Magnetic Anisortropy Properties of [Co₆₀Cu₄₀/Pt]₆ Multilayers

Dong Su Son*, Sang Ho Lim, and Seong-Rae Lee

Department of Materials Science and Engineering, Korea University, Seoul 136-713, Korea

Magnetic tunnel junctions with perpendicular magnetic anisotropy (PMA) have attracted a lot of research interests. This is because distinct advantages of this system over in-plane magnetic anisotropy are found in the reduced critical current density (J_c) for magnetization switching with high thermal stability. Among the various PMA materials, Co/Pt multilayers are promising candidate owing to its high anisotropy energy (K_u). However, in order to make commercially viable device using this material, it would be desirable to decrease the M_s for feasibility of reducing J_c . Although conventional Co/Pt multilayers consisted of thick Pt with thin Co layer coincide with this requirement, it should be lead to degradation of PMA during post annealing process. In this respect, low M_s material, Co₆₀Cu₄₀(~37% smaller M_s than pure Co [1]) was considered in this study and an effort to constitute thermally stable multilayers having low M_s was made by inverted layer structure of thick CoCu with thin Pt layer.

The structure of Ta / Pt / Ru / $[Co_{60}Cu_{40}(t_{CoCu})/Pt(0.2 \text{ nm})]_6$ / Ru was fabricated on a Si/SiO₂ substrate using a DC magnetron sputtering system. The base pressure was 7×10^{-8} Torr while working pressure was fixed at 2×10^{-3} Torr. Post annealing was carried out temperature range of ~500°C and magnetic properties were measured by vibrating sample magnetometer.

As shown in Fig. 1(a) the values of K_u are mainly affected by t_{CoCu} . For the as-deposited sample, increase of K_u is observed from 0.33 to 1.12×10^6 erg/cc as increasing the t_{CoCu} of 0.3~0.5nm. Although these values are slightly increased by the post annealing process, the effect is not prominent. In the case of M_s , however, quite different dependencies on post annealing are observed. As shown in Fig. 1(b), the values of M_s are nearly proportional to t_{CoCu} , variation trends of which are similar to the case of K_u . However, post annealing at 500°C effectively reduce the M_s values over the whole t_{CoCu} range. Transmission electron microscopy results demonstrate that layer intermixing between CoCu and Pt is attributed to reduced M_s . As a consequence, the most desirable properties of strong PMA ($K_u \sim 1.39 \times 10^6$ erg/cc) with low M_s value (340 emu/cc) is obtained from [Co₆₀Cu₄₀(0.5nm)/Pt (0.2nm)]₆ structure annealed at 500°C.

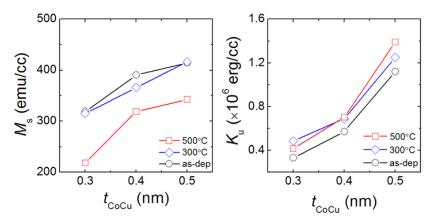


Figure1. The change in (a) Ku and (b)Ms as a function of tCoCu.

Reference

[1] Yuan etal,.J.Appl.Phys.108,113909(2010).

Corresponding author: *Sang Ho Lim, e-mail: sangholim@korea.ac.kr