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ABSTRACT

This study was computationally explored how the fuel autoignition reactivity was

affected by operating parameters such as fuel, pressure, intake temperatures, engine

speed and EGR compositions for HCCI combustion. This is done for DME and

CHEMKIN-PRO was used as a solver. At first, influence of the operating parameters

and EGR compositions were showed. And then, in order to clarify the mechanism of

them on autoignition reactivity, data-sets of kinetic were analyzed to investigate the

elementary reaction path for heat release at transient tempeatures by using contribution

matrix.
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HCCI combustion offers both high-efficiency

and very low NOx and particulate emissions

[1] [2]. However, it has not been reached at

production stage since combustion phasing is

very difficult to control as conventional engine

s [3]. This means to control of autoignition

reactivity [4].

HCCI combustion is controlled by chemical re

action depending on thermal properties such as

intake gas temperature, intake gas pressure, eq

uivalence ratio and residual gas composition as

called exhaust gas recirculation (EGR). Therefo

re, the fundamental understaning of how these

parameters influence on autoignition is very

important for its further development.

The objective of this study is to investigate th

e influence of engine operating parameters and

and EGR compositions on autoignition reactivit

y for DME fueled HCCI engine. Then, in order

to investigate the mechanism of those paramet

ers, contribution matrix has been used. Contrib

ution matrix is a method to extract important

reaction paths from a reaction mechanism [5].

In this study, DME which has negative temper

ature coefficient was used as a fuel. Therefore,

it has two-stage heat release as called LTHR

(low temperature heat release) and HTHR (hig

h temperature heat release). Curran’s DME mo

del was used in this study, which has 78 elem

ents and 351 elementary reactions [6].

Calculations were carried out using a single-zo

ne model of CHEMKIN-PRO as a solver. The

single zone model treated the in-cylinder charg

e as a 0-dimensional and thermodynamic prope

rties while all gases were assumed to be ideal

gases.

Calculation was performed only in one compres

sion and expansion as shown in Fig.1. Combus

tion analysis period was modeled according to

the specifications of the engine in Table 1.

Definition of combustion duration was defined

by method from Ando et al. [5] as shown in F

ig.2.
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Table 1 Engine specifications

Fig. 1 Combustion analysis period..

Fig. 2 Definition of key combustion timings.

To gain better understanding of the mechanism

of autoignition reactivity affected by the operating

parameters, contribution matrix has been done to

investigate the contribution of each elementary

reaction for heat release. This matrix is

constructed by contribution ratios heat release at

transient temperature. Eq.1 shows the definition of

contribution ratio.

 


  



 


(1)

Fig. 3 Absolute Values of Heat Release Rates

by Major Elementary reactions plotted against

temperature. (Phi = 0.5, EGRrate = 50%, Ne =

1200rpm, Po = 0.1MPa, To = 400K).
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400 0.0 -100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
440 0.4 -0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
481 1.9 -2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
522 32.2 -43.5 0.8 0.2 -0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
564 39.5 -51.5 3.6 1.8 -1.2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
612 35.5 -37.4 9.8 8.4 -3.3 5.0 -0.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
656 30.8 -18.5 14.9 15.3 -5.4 10.8 -2.3 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
699 28.2 -4.2 15.0 16.0 -6.2 15.8 -8.6 2.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0
745 28.2 -0.1 12.8 13.8 -6.6 17.9 -11.0 4.8 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0 0.0 0.0
773 28.6 0.0 11.3 12.2 -7.0 18.5 -10.8 6.5 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.0
778 28.6 0.0 10.9 11.9 -7.0 18.5 -10.7 6.8 0.8 0.0 0.1 0.1 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0 0.0 0.0
808 24.3 0.0 8.2 9.3 -7.0 16.3 -9.8 8.5 1.4 -0.1 2.4 2.0 0.4 0.0 0.0 0.0 3.2 0.0 0.9 0.0 0.0 0.0
896 10.8 0.0 1.5 1.8 -3.8 8.0 -1.9 6.7 2.6 -3.2 11.0 5.1 5.5 -0.4 0.0 0.0 11.7 -0.1 0.6 0.0 0.0 0.2
927 9.6 0.0 0.9 1.0 -3.3 8.5 -1.1 6.0 4.9 -4.1 14.6 6.1 4.8 -3.5 0.0 0.0 8.8 -0.1 0.3 0.0 0.0 0.3
931 9.3 0.0 0.8 1.0 -3.2 8.5 -1.0 5.9 5.1 -4.2 14.7 6.1 4.7 -3.8 0.0 0.0 8.8 -0.1 0.3 0.0 0.0 0.3
987 4.7 0.0 0.2 0.3 -1.6 8.2 -0.3 3.1 4.7 -5.6 16.2 7.1 5.6 -7.7 0.0 0.0 9.7 -0.1 0.4 0.0 0.0 0.6

1030 2.4 0.0 0.1 0.1 -0.8 8.0 -0.1 1.7 3.5 -5.6 17.3 8.3 6.2 -10.5 0.1 0.0 9.4 -0.2 0.6 0.0 0.0 0.8
1077 1.1 0.0 0.0 0.0 -0.4 7.6 0.0 0.8 2.2 -5.1 18.0 9.7 6.8 -13.0 0.1 0.0 8.7 -0.2 0.8 0.0 0.0 1.2
1130 0.5 0.0 0.0 0.0 -0.2 7.1 0.0 0.3 1.3 -4.5 18.1 10.8 7.2 -14.6 0.1 0.0 8.0 -0.3 1.2 0.0 0.0 1.6
1213 0.1 0.0 0.0 0.0 0.0 6.0 0.0 0.1 0.5 -3.6 17.3 12.0 7.6 -15.6 0.2 0.0 7.9 -0.4 1.9 0.0 0.0 2.0
1249 0.1 0.0 0.0 0.0 0.0 5.4 0.0 0.1 0.3 -3.3 16.7 12.3 7.7 -15.5 0.3 0.0 8.3 -0.6 2.3 0.1 0.0 2.0
1294 0.0 0.0 0.0 0.0 0.0 4.7 0.0 0.0 0.2 -3.0 15.7 12.4 7.7 -15.1 0.4 0.0 9.0 -0.8 2.8 0.1 0.0 1.9
1338 0.0 0.0 0.0 0.0 0.0 3.9 0.0 0.0 0.1 -2.7 14.6 12.3 7.5 -14.3 0.6 0.0 10.1 -1.1 3.3 0.2 0.0 1.7
1385 0.0 0.0 0.0 0.0 0.0 2.8 0.0 0.0 0.1 -2.4 13.1 11.9 7.3 -13.0 0.8 0.0 11.8 -1.5 4.0 0.3 0.0 1.4
1399 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 0.1 -2.4 12.5 11.6 7.3 -12.5 1.0 0.0 12.5 -1.7 4.2 0.4 0.0 1.3
1432 0.0 0.0 0.0 0.0 0.0 1.6 0.0 0.0 0.0 -2.2 11.0 10.8 7.0 -11.3 1.3 0.0 14.2 -2.2 4.9 0.6 -0.1 1.1
1472 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 -2.0 8.6 8.8 6.5 -9.5 1.9 0.1 16.7 -3.1 6.0 1.1 -0.2 0.9
1514 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 -1.9 5.7 5.9 5.5 -7.5 2.8 0.1 19.1 -4.1 7.1 1.8 -0.4 0.7
1542 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.9 4.4 4.6 4.8 -6.4 3.4 0.1 19.7 -4.7 7.7 2.1 -0.5 0.5
1576 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.7 3.6 4.0 4.2 -5.4 4.1 0.2 19.6 -5.3 8.5 2.4 -0.8 0.4
1614 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.5 3.2 3.9 3.7 -4.6 4.9 0.2 19.1 -5.8 9.8 2.8 -1.0 0.4
1661 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.1 2.7 3.8 3.0 -3.6 6.5 0.4 18.6 -6.6 12.0 3.4 -1.6 0.3
1717 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.7 1.9 3.3 2.0 -2.3 10.1 0.7 19.4 -7.6 15.7 4.4 -2.8 0.3
1758 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.4 1.1 2.1 1.3 -1.3 15.2 1.3 21.6 -8.3 19.1 5.2 -4.4 0.3
1799 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.3 0.6 0.8 -0.5 21.0 2.3 24.5 -8.4 22.0 5.7 -5.9 0.3
1844 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.6 -0.2 22.8 3.1 25.1 -8.2 23.2 5.5 -6.4 0.3
1889 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.5 0.0 22.7 3.7 24.8 -8.2 23.9 5.2 -6.6 0.4
1931 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.2 22.4 4.2 24.4 -8.2 24.5 4.9 -6.7 0.4
1970 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.4 21.9 4.7 24.2 -8.1 25.3 4.6 -6.8 0.5
2022 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.6 21.2 5.2 23.9 -7.8 26.7 4.1 -7.0 0.5
2074 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 0.1 0.2 0.9 19.9 5.4 23.9 -7.2 29.2 3.3 -7.0 0.7
2106 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 0.1 0.1 1.4 18.2 5.1 24.5 -6.1 32.6 2.4 -6.6 0.9
2141 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 -17.2 -2.0 -33.3 18.9 3.3 1.2 0.0 5.6 -13.4
2186 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 -12.1 -1.5 -35.9 19.0 2.5 8.1 0.4 4.6 -10.5
2229 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 -7.6 -1.1 -38.9 18.8 1.6 13.6 0.8 3.7 -8.0
2270 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 -3.7 -0.8 -42.2 18.3 0.8 18.1 1.2 2.9 -5.9
2324 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.2 -0.5 -45.2 16.8 -0.4 22.4 1.6 1.7 -3.2
2369 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 4.6 -0.3 -44.6 14.6 -1.3 23.9 1.8 0.7 -1.1
2402 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 6.7 -0.1 -43.9 13.2 -1.8 24.7 2.0 0.2 0.2
2407 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 6.9 0.0 -43.4 13.2 -1.8 24.9 2.0 0.1 0.4
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Loop HTHR

DME/Air
P0 = 0.1 Mpa
Ne = 1200 rpm
e = 19.5:1
T0 = 400 K
ØDME = 0.40
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Calculation
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H2O2 Loop
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Fig. 4. Contribution Matrix to Heat release.
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