불연속 패턴 생성을 위한 롤 가공기의 복합가공 정렬 Alignment of Multiple Processes in Roll Lathes to Generate Noncontinuous Patterns

*김창주¹, 오정석¹, 심종엽¹, 송준엽¹

*C. J. Kim(changjukim@kimm.re.kr)¹, J. S. Oh¹, J. Y. Shim¹, J. Y. Song¹ ¹ 한국기계연구원 첨단생산장비연구본부

Key words : Roll lathe, Micro-pattern, Ultra-precision

1. 서론

롤 금형은 디스플레이용 광학필름 등의 성 형에 많이 쓰이고 있고 지금까지는 선삭가공으 로 구현할 수 있는 단순한 미세 연속패턴이 대 부분이었다. 하지만 유연기판 디스플레이 및 전자소자 생산 장비 신기술에 대한 요구가 증 가하면서 복잡한 불연속 패턴을 가지는 롤 금 형에 대한 수요가 늘어나고 있다.

한국기계연구원에서는 수년 간 길이 2m 급 선삭 기반 초정밀 롤 금형 가공기를 개발해 왔 다[1-3]. 이를 발전시켜 선삭 외에 밀링가공, 레 이저 가공 및 FTS 를 이용해 불연속 패턴가공 이 가능한 복합 가공기를 개발하고 있다.

다양한 가공 방법을 한 기계에서 구현하기 위해서는 공간적인 제약 때문에 롤의 앞쪽 뿐 만 아니라 뒤쪽에서도 가공을 행하는 것이 필 요하다. 이 경우 다른 위치에서의 가공이 잘 정렬되어 있지 않은 상태에서 중첩되면 최종 가공 정밀도가 나빠진다. 길이가 긴 롤 가공에 서는 하중에 의한 롤의 중력방향 처짐량이 길 이방향 위치에 따라 변하기 때문에 한 지점에 서 정렬하더라도 다른 위치에서는 정렬이 어긋 날 수 있다. 이 논문에서 이러한 문제점을 파 악하고 그 대응방향을 제시하고자 한다.

2. 롤 가공기의 개념설계 및 기본사양

Fig. 1 은 현재 개발 중인 롤 가공기의 개념 설계를 보여준다. 정밀한 위치 결정을 위하여 주요 축들은 유정압 베어링으로 연결되어 있으 며 비접촉식 리니어 이송계 또는 직구동 모터 가 사용되었다. 길이 방향 이송을 위한 Z축 위 에 롤의 앞쪽에는 선삭 또는 밀링 등의 절삭가 공을 위한 X₁ 축이, 뒤쪽에는 레이저 가공장치 를 위한 X₂축이 있다.

Fig. 1 Conceptual design of the machine 기본적인 기계사양을 Table 1 에 정리하였다.

Table 1 Machine specifications

Max. workpiece size		ф500mmX2000mm
Axis travel	X_{1}, X_{2}	250 mm
	Ζ	2400 mm
Command	X_{1}, X_{2}, Z	1 nm
resolution	Spindle	0.07 arcsec
	X_{l}, X_{2}	10 m/min
Max. speed	Ζ	20 m/min
	Spindle	300 RPM

3. 중력에 의한 롤의 처짐과 두 위치에서의 가공의 정렬

길고 무거운 롤이 양쪽 끝단에서 지지되고 있는 상태에서 중력에 의한 롤의 처짐은 무시 하지 못할 정도이며 최대 크기의 롤의 경우 중 심에서 그 양이 12μm 에 달한다. Fig. 2는 Z축 상의 한 위치에서 롤의 처짐이 없다는 가정 하 에 롤의 앞과 뒤쪽에서 가공할 경우 발생하는 두 가공 간의 각위치 차이를 개념적으로 나타 내었다. 중력의 영향이 없고 앞, 뒤 가공이 이 상적으로 정렬되어 있는 경우 앞쪽 가공 후 정 확하게 180 도 회전 후 뒤쪽에서 가공하면 원 주 방향으로 동일한 위치에 패턴이 중첩된다. 하지만 중력에 의해 롤의 중심이 ΔY 만큼 처 진 경우 앞쪽 가공은 이상적인 경우보다 ΔY 만큼 위에서 발생하고 180 도 회전 후 그 가공 위치는 다시 ΔY 만큼 아래에 위치하게 되므로 뒤쪽 가공과는 2*ΔY 만큼의 거리차를 가지게 된다.

Fig. 2 Position deviation between front and rear processes caused by gravity-induced roll deformation (View from +Z side)

더욱이 롤의 처짐량은 Z 축상의 위치에 따라 변하게 된다. 앞, 뒤 가공의 실제 각위치 차이 를 Fig. 2 에서와 같이 θ 로 정의하면 식 (1)과 같이 나타낼 수 있다. 여기서 z 는 Z 축 상의 위치, D는 롤의 직경을 의미한다.

$$\theta(z) = \pi - \cos^{-1}\left(\frac{2 \cdot \Delta y(z)}{D}\right) \tag{1}$$

실제적인 롤의 처짐을 조사하기 위하여 유 한요소해석 방법을 이용하여 중력에 의한 기계 구조물의 정적 변형을 계산하였다. 그 해석결 과에서 추출한 롤 중심의 변형량과 이를 2 차 함수로 근사시킨 결과를 중첩하여 Fig. 3 에 표 시하였다. 이 결과로 보아 롤의 처짐량은 식 (2)와 같은 2 차 함수로 근사적으로 표현할 수 있다. *a* 는 롤의 크기, 무게, 강성에 의해 결정 되는 계수이며 *z*, 는 두 가공이 정렬된 위치에 서 롤의 중심까지의 거리이다.

$$\Delta y(z) = a \cdot \{(z - z_0)^2 - z_0^2\}$$
(2)

식 (1)과 (2)를 이용하여 두 가공간의 각위 치를 보정함으로써 모든 Z 위치에서 두 가공의 정렬을 유지할 수 있다.

5 결론

를 금형을 앞과 뒤 위치에서 가공할 때 중 력에 의한 롤의 변형때문에 두 가공 사이에 원 주방향 위치편차가 생길 수 있음을 설명하였다. 또한 롤의 중력방향 변형량을 Z축 위치의 2차 함수로 근사적으로 표현할 수 있음을 보였다. 이러한 관계를 이용하여 두 가공의 상대적인 각위치를 보정함으로써 중첩가공된 패턴의 형 상정밀도를 향상시키는 방법을 제시하였다.

참고문헌

- 오정석, 황주호, 박천홍, "초정밀 롤 금형 가 공기 개발," 한국정밀공학회 2007 년도 추 계학술대회 논문집, 465-466, 2007.
- 오정석, 황주호, 김병섭, 송영찬 박천홍, "1m 급 초정밀 롤 금형 가공기의 성능평가," 한 국정밀공학회 2008 년도 춘계학술대회 논 문집, 85-86, 2008.
- 오정석, 심종엽, 김병섭, 황주호, 송창규, 박 천홍, "2m 급 초정밀 롤 금형 가공기 개발," 한국정밀공학회 2009 년도 추계학술대회 논문집, 663-664, 2009.