DC/RF 중첩형 마그네트론 스퍼터링법으로 증착한 ITO 초박막의 SnO2 함량에 따른 전기적 ,광학적 특성 및 미세구조 변화

  • 발행 : 2012.08.20

초록

차세대 디스플레이에서 3차원 감성 터치 또는 플렉시블 기판 등에 사용되고 있는 ITO(Tin-doped Indium Oxide) 박막은 고 해상도 및 소자 효율 향상을 위해 전 가시광 영역에서 높은 투과율이 요구되고 있다. 일반적으로 ITO 박막은 두께 감소에 따라 빛의 두께 산란 없이 전 가시광 영역에서 높은 투과율을 가지는 반면, 두께가 감소할수록 박막 성장 시 비정질 기판의 영향을 크게 받아 박막 결정성 감소와 더불어 전기전도성이 감소되는 경향을 보인다. 특히, 매우 얇은 두께에서의 ITO 박막 물성은 초기 박막 핵 생성 및 성장과 증착 공정 중에 발생하는 고 에너지 입자(산소 음이온, 반사 중성 아르곤 등)의 박막 손상에 대한 영향을 크게 받을 뿐만 아니라 ITO 박막 내의 SnO2 도핑함량에도 매우 의존한다. 따라서, 매우 얇은 두께에서 높은 투과율과 뛰어난 전기전도성을 동시에 가지는 고품질 ITO 초박막 제조를 위해서는 박막 초기 핵 성장 제어기술 및 SnO2 함량에 따른 ITO 초박막의 전기적, 광학적 거동에 관한 연구가 필요하다. 본 연구에서는 다양한 SnO2 함량에서 고품질의 ITO 초박막을 DC/RF 중첩형 마그네트론 스퍼터링법을 이용하여 박막 증착 중에 발생하는 고에너지 입자의 기판충격으로 인한 박막손상을 최소화하여 증착된 박막의 전기적, 광학적 특성 및 미세구조를 관찰하였다. 그리고 전체파워에서 RF/(RF+DC) 비율을 제어하여 증착한 ITO 초박막의 물성을 최적화 하였으며, 상온 및 결정화 온도 이상에서 다양한 SnO2 함량을 가진 ITO 박막을 두께(150 nm, 25 nm)에서 각각 증착하여 전기적, 광학적 거동 및 XRD를 통한 박막의 미세구조 변화를 비교 분석하였다. 그리고 증착된 모든 ITO 초박막에서 가시광 투과율은 빛의 두께 산란 없는 높은 투과율(>85 %) 을 보이는 것을 확인 할 수 있었다. 증착된 ITO 박막의 전기적 특성 및 미세구조는 RF/(DC+RF)비율 50%에서 최적임을 확인하였다. 이는 RF/(DC+RF) 비율 증가에 따른 캐소드 전압 최적화로 박막의 초기 핵 성장 과정에서 기판상의 고에너지 입자로 인한 박막 손상의 감소 및 리스퍼터 되는 산소량을 최적화 시키고, 이는 박막의 결정성 향상으로 이어져, 박막내의 결함 밀도 감소 및 SnO2 고용 효율을 증가시켜 전기전도성 향상에 기인하였다고 판단된다. 또한, 증착된 ITO 초박막은 SnO2 함량 변화에 따라 박막의 결정성 및 전기적 특성에서 미세한 변화를 보였다. 이러한 ITO 박막의 물성변화는 박막 두께 감소에 따른 결정성 감소와 함께 SnO2의 고용 한계 변화로 인한 것으로 판단된다. 또한, RF/(DC+RF) 비율의 증가에 따른 ITO 초박막의 전기적, 광학적 및 미세구조는 Vp-Vf의 변화와 관련하여 설명되어 진다.

키워드