Proceedings of the Korea Water Resources Association Conference (한국수자원학회:학술대회논문집)
- 2012.05a
- /
- Pages.984-984
- /
- 2012
Flood Estimation Using MAPLE Forecasted Precipitation Data
MAPLE 강우예보자료를 활용한 유출량 예측
- Published : 2012.05.16
Abstract
지구온난화와 기후변화의 영향으로 전 지구적으로 이상홍수, 이상가뭄, 한파와 같은 이상기상 현상이 빈번하게 발생하고 있다. 국내에서는 2010년 추석 광화문 침수사태와 2011년 우면산 산사태와 같은 국지성 집중호우로 인한 인적 물적 피해가 속출하고 있다. 전통적으로 시기나 양적인 측면에서 대부분 장마기간에 국한되었던 강우집중현상이 과거와 달리 특정기간에 상관없이 발생하고 단기성, 국지성을 지닌 호우의 발생빈도가 높아지는 등 국내 강우의 특성이 변하고 있다. 이러한 변화에 대응하기 위해서 강우예측과 유출량예측의 정확도를 높이기 위한 시도가 다양하게 이루어지고 있다. 강우예측의 정확성을 높이기 위해 기상청에서는 단기예보를 목적으로 전지구 통합모델과 지역 통합모델을 연계한 동네예보를 수행하고 있으며, 초단기 예보를 위한 목적으로 VSRF, SCAN, VDRAS, MAPLE 등의 예보를 수행하고 있다. 홍수량 예측에서는 일반적으로 사용하고 있는 물리적 기반의 모형에 레이더강우와 같은 격자형 강우자료를 사용하여 정확성을 높이거나, 기존의 집중형 모형을 분포형 모형으로 대체하기 위한 연구 등이 이루어지고 있으며, 모형 구축이 간편하고 예측 정확도가 우수하다는 장점으로 인해 신경회로망이나 퍼지추론기법 등을 사용한 연구도 지속적으로 이루어지고 있다. 본 연구에서는 수자원분야에 산재한 불확실성을 적극적으로 인정하고 수학적으로 해석하기 위한 이론인 퍼지이론에 신경망 이론을 도입한 neuro-fuzzy 기법을 사용하여 홍수량을 예측하였다. 모형의 입력자료로는 관측된 강우자료와 유출량자료 및 기상청에서 제공하는 MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation) 강우예측자료를 사용하여 적용성을 평가해보았다. 모형의 적용성을 평가하기 위해 시험유역을 충주댐 상류 유역으로 선정하였으며, 2010년 2011년 홍수기의 충주댐 유입량을 예측하였다. 모형의 입력자료를 변경하여 입력자료의 변화에 따른 결과를 비교하였고, clustering 반경의 변화에 따른 정확도를 비교하였다. 모형의 정확도는 평균제곱근오차와 첨두수위오차를 통해 비교하였으며, 비교결과 전반적으로 lead time이 길어질수록 MAPLE 사용 시 예측 정확도가 우수하였고, clustering 반경은 0.5일 때 가장 우수한 결과를 보였다.