Data Replication Technique for Improving Data Locality of MapReduce

맵리듀스의 데이터 로컬리티 향상을 위한 데이터 복제기법

  • Lee, Jung-Ha (Dept. of Computer Science Education, Korea University) ;
  • Yu, Heon-Chang (Dept. of Computer Science Education, Korea University) ;
  • Lee, Eun-Young (Dept. of Computer Science, Dongduk Women's University)
  • 이정하 (고려대학교 대학원 컴퓨터교육학과) ;
  • 유헌창 (고려대학교 대학원 컴퓨터교육학과) ;
  • 이은영 (동덕여자대학교 컴퓨터학과)
  • Published : 2012.06.22

Abstract

인터넷 활용과 웹 어플리케이션의 개발이 증가함에 따라 처리해야하는 데이터의 양도 또한 증가하고 있다. 대량의 데이터를 효과적으로 처리하기 위한 방법 중 하나로 병렬처리 프로그래밍 모델인 맵리듀스가 있다. 하둡은 맵리듀스의 오픈소스 구현으로 대량의 데이터를 병렬로 처리하는 무료 자바 소프트웨어 프레임워크이다. 분산 파일 시스템을 사용하는 하둡에서는 처리하는 데이터가 다른 노드에 위치하는 데이터 로컬리티 문제가 전체 작업 수행시간의 증가를 야기하는 문제가 있다. 본 논문에서는 하둡에서의 데이터 로컬리티 문제를 해결하기 위한 데이터 복제기법을 제안한다. 제안하는 데이터 복제기법에서는 1) 라그랑지 보간법을 사용하여 과거 접근수를 이용한 미래 접근수를 예측하고, 2) 예측된 값을 Threshold값으로 설정하고, 3) 데이터 로컬리티 문제가 발생하였을 때, 복제사본을 생성할 것인지 캐시를 생성할 것인지를 결정하여 복제 사본의 수를 최적화 한다. 실험을 통해 단순히 복제사본 수를 증가시킴으로써 데이터 로컬리티를 향상을 이루어도 작업 완료시간이 감소하는 것이 아니라는 결과를 볼 수 있었고, 오버 런치로 인한 작업 완료시간 증가를 줄이기 위해 데이터 복제사본 수 최적화의 필요성을 확인할 수 있었다.

Keywords

Acknowledgement

Supported by : 한국연구재단