EU항만의 효율성에 관한 연구

(DEA와 Shannon's Entropy의 통합모형과 DEA-Window 분석을 이용하여)

박 호* • * 김동진 • 김율성**

*부산대학교 국제전문대학원 박사과정, † 부산대학교 국제전문대학원 교수, **부산발전연구원 연구위원

요 약: 한-EU FTA 발효 등은 교역 확대가 예상되며, 항만의 역할은 더욱더 중요해 질 것이다. 항만의 성과를 측정할 수 있는 방안으로 DEA를 활용한 효율성 측정을 들 수 있으며, 본 연구에서는 DEA 측정 시 모형 선정의 어려움과 동태적 효율성을 변화를 분석하기 위해 DEA와 Shannon's Entropy 결합모형으로 효율성을 분석하고, DEA-Window 모형으로 동태적 효율변화를 분석하였다.

핵심용어 : 항만 효율성, DEA, Shannon's Entropy, DEA-Window

1. 서론

1) 연구의 배경

1. 서론

3) 연구의 범위

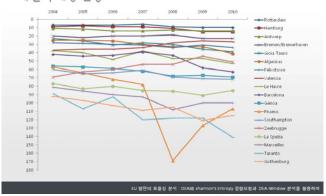
1. 서론

2) 연구의 목적

2. 선행연구

1) DEA를 이용한 선행연구

- * 연회원 hpark0321@naver.com
- † 교신저자 종신회원) ssskdj@hanmail.net
- ** 종신회원 kmaritime@bdi.re.kr


2. 선행연구

2) DEA-Window를 이용한 선행연구

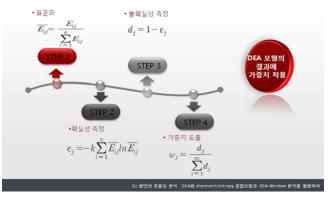
4. EU 항만의 효율성 분석

1) 분석 대상 현황

3. 연구의 모형

1) DEA

	CCR-I	BCC-I	всс-о	CRS-SBM	VRS-SBM	FDH-I			
가정	CRS	VRS	VRS	CRS	VRS	FreeDisposal Hull			
기준	Input	Input	Output	X	X	Input			
특징	기본모형	CCR 개선모형	CCR 개선모형	비방향성	비방향성	블록성 제거			
2)	DEA-Wind	low							
	전체 DMU	$\hat{r} = n(k-p+1)$	-1)p						
윈도우길이 $(p)=rac{(k+1)}{2}$									
$n \colon DMU$ 수, $k \colon$ 비교대상기간, $p \colon \Re \Sigma$ 우길이									
EU 향면의 효율성 분석 : DEA와 shannon's Entropy 결합모형과 DEA-Window 분석을 활용하이									


4. EU 항만의 효율성 분석

2) 투입, 산출 변수의 기초통계

3. 연구의 모형

3) DEA와 Shannon's Entropy의 결합모형

4. EU 항만의 효율성 분석

3) DEA 분석 결과(2010)

	CCR-O	BCC-O	8004	FDH	CRS-SBM	VRS-S8N
Rotterdam	0.7763	1	1	1	0.6889	1
Hamburg	0.7662	1	1	1	0.6928	1
Antwerp	0.846	1	1	1	0.6726	1
Eremen/Eremerhaven	0.7653	0.9375	0.9191	1	05119	0.6495
Giola Tauro	0.8951	0.9357	0.9298	1	0.8193	0.8296
Algeciras	1	1	1	1	1	1
Felicstoire	0.9934	1	1	1	0.9714	1
Valencia	1	1	1	1	1	1
Le Havre	0.4966	0.5473	0.5168	0.7028	0.3847	0.3847
Barcelona	0.5656	0.6265	0.583	0.8182	0.508	0.508
Genoa	0.4453	0.4453	0.4482	0.7872	0.34	0.34
Piraeus	0.622	1	1	1	0.421	1
Southampton	1	1	1	1	1	1
Zeebrugge	0.9894	1	1	1	0.7892	1
La Spezia	0.9994	1	1	1	0.8925	1
Murselles	0.6647	0.6698	0.9541	1	0.5236	0.607
Taranto	0.4122	1	1	1	0.332	1
Gothenburg	0.5639	1	1	1	0.4456	1

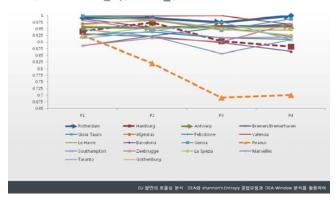
EU 항만의 효율성 분석 : DEA와 shannon's Entropy 결합모함과 DEA-Window 분석을 활용하여

4. EU 항만의 효율성 분석

4) DEA와 Shannon's Entropy 결합 모형분석 결과(2010) 및 비교

	결합모형결과	순위	6개 모형 평균	순위	
Rotterdam	0.8544	9	0.9109	8	
Hamburg	0.8537	10	0.9098	9	
Antwerp	0.8625	8	0.9198	7	
Bremen/Bremerhaven	0.6999	13	0.7972	13	
Gioia Tauro	0.8669	7	0.9016	10	
Algeciras	1.0000	1	1.0000	1	
Felixstowe	0.9893	4	0.9941	4	
Valencia	1.0000	1	1.0000	1	
Le Havre	0.4482	17	0.5055	17	
Barcelona	0.5490	16	0.6016	16	
Genoa	0.3957	18	0.4677	18	
Piraeus	0.7364	11	0.8405	11	
Southampton	1.0000	1	1.0000	1	
Zeebrugge	0.9287	6	0.9631	6	
La Spezia	0.9645	5	0.9820	5	
Marseilles	0.6475	15	0.7365	15	
Taranto	0.6665	14	0.7907	14	
Gothenburg	0.7333	12	0.8349	12	
평균	0.7887		0.8420		

FU 하다의 중요성 보석 : DEASE shannon's Entropy 결하모하고 DEA-Window 보석은 회용하여


4. EU 항만의 효율성 분석

5) DEA-Window 분석(기간별)

4. EU 항만의 효율성 분석

5) DEA-Window 분석(window별)

5. 결론

