OID 해석시스템 연동을 위한 클라이언트 프로그램 설계 및 구현

백형종*, 서영진*, 정의현**
*한국인터넷진흥원
**안양대학교 컴퓨터학과

e-mail: {hjpaik, yjsuh}@kisa.or.kr, jung@anyang.ac.kr

Design and Implementation of Client for OID Resolution System

Hyong Jong Paik*, Yung Jing Suh*, Euihyun Jung**

*Korea Internet Security Agency

**Dept. of Computer Science, Anyang University

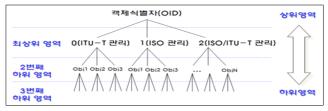
요 약

최근 다양한 산업간 융·복합화 및 사물인터넷 출현에 따른 세계적으로 유일하게 객체를 식별할 수 있는 객체식별자(OID)의 중요성이 커지고 있으며 인터넷 기반으로 객체식별자 및 관련 정보를 해석할 수 있는 OID 해석시스템을 활용한 다양한 분야에서의 응용서비스 개발이 예상된다. 이에 본 논문에서는 OID 해석시스템 연동을 위한 클라이언트 프로그램의 설계 및 구현방안을 제안한다.

1. 서론

OID는 ITU-T X.680 & ISO/IEC 8824-1 "Information technology - Abstract Syntax Notation One(ASN.1): Specification of base notation"표준에 의해 "객체(Object)를 유일하게 식별하기 위한 값(A globally unique value associated with an object to unambiguously identify it.)"이라고 정의되었으며, 이는 유형의 사물 뿐 아니라 무형의 콘텐츠 등에도 OID가 사용 가능하다는 것을 의미한다[1].

OID는 표준문서, 국가, 기업 등 객체를 식별하는 방법으로 사용되어 왔으며 특히 인터넷 망을 관리하는 SNMP 프로토콜에서 MIB 객체를 식별하기 위한 OID가 대표적으로 활용되었다[2]. 그러나 최근 네트워크 기반으로 하는 산업간융·복합 서비스가 활성화 되면서 RFID/USN, u-City 및 u-Health 등의 다양한 분야에서 OID 활용을 위한 표준화 및 연구가 진행되고 있다[3, 4].


최근에 ITU-T, ISO/IEC에서는 다양한 응용분야에서 사용되는 OID의 연관된 정보를 획득하기 위한 OID 해석시스템 (ORS:OID Resolution System)의 구조, 프로토콜을 정의하는 국제표준제정(ISO/IEC 29168-1)이 완료됨에 따라 실질적으로 다양한 분야에서 ORS 활용을 위한 글로벌 OID 해석시스템 인프라 구축이 추진되고 있다.

한국인터넷진흥원에서는 표준에서 정의한 OID 해석시스템 중에서 최상위 OID해석시스템(Root ORS)에 대한운영 및 관리에 대해 ISO/IEC로부터 세계 최초로 관리기관으로 선정되어 Root ORS를 구축하였고 동시에 표준에서정의한 내용에 따라 ORS 연동을 위한 클라이언트 프로그램을 개발하였다.

이에, 본 논문에서는 OID 해석시스템 구축을 검증하고 연동 테스트를 위한 클라이언트 프로그램의 설계 및 구현방안을 기술하고자 한다.

2. OID 체계 및 OID 해석시스템

OID는 계층적 트리구조의 위임체계를 갖는다. (그림 1)에서 보면 최상위(Root) 영역 0, 1,2 등 총 3개만 사용하도록 제한되며, '0'은 ISO에서 '1'은 ITU-T에서 관리하며, '2'는 ISO와 ITU-T에서 공동으로 관리하고 있다[3]. 국내에서는 한국인터넷진흥원과 기술표준원 두 기관에서 각각 OID를 관리하고 있다.

(그림 1) OID 체계

최근 인터넷을 통한 다양한 산업분야에서의 정보유통 및 서비스가 연동이 가능해져 이를 기반으로 하는 새로운 융합형 서비스 개발의 필요성이 증대되어 국제표준화 기구인 ISO와 ITU가 공동으로 관련 기술에 대하여 국제표준화를 추진 하여 OID 해석시스템이라는 개념을 도입하였다.

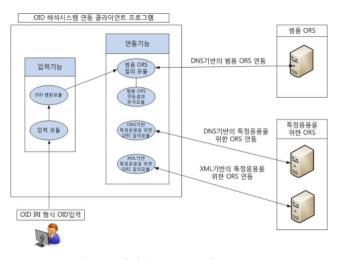
OID 해석시스템은 OID 및 관련정보(코드종류, 암호알고리즘) 등을 인터넷상에서 저장하는 시스템으로 마치 도메인 주소를 저장하는 DNS 계층구조와 유사한 구조로 객체식별자 질의에 대한 관련 정보를 해석하는 서비스를 제공하는 시스템이다.

또한 OID 해석시스템은 어플리케이션, 범용 ORS 및 특정 응용을 위한 ORS으로 구성된다. 다만, 특정 응용을 위한 ORS는 반드시 필요한 것은 아니다.

[&]quot;본 연구는 지식경제부의 지원을 받는 정보통신표준화 및 인증 지원사업의 연구결과로 수행되었음"

3. 클라이언트 프로그램 설계 및 구현

본 절에서는 ISO/IEC 29168-1 국제표준에 따라 OID IRI 형식으로 입력된 OID 값을 DNS 기반으로 구축된 OID 해석시스템과 연동을 통한 OID 정보를 얻는 클라이언트 프로그램 개발을 위한 설계 및 구현 내용을 기술한다.


3.1 클라이언트 설계

클라이언트는 기본적으로 입력된 OID 값에 대해서 OID해석 시스템과 연동하여 해당 OID 정보를 알아내는 역할을 한며 이를 위해 클라이언트는 다음과 같은 기능을 가져야 한다.

<표 1> OID 해석시스템 연동 클라이언트 기능 요구사항

주요기능	설명
OID 입력	- OID-IRI 형식의 OID를 입력할 수 있는 입력기능
및 OID	- OID-IRI 형식의 OID를 범용 ORS에 질의 할 수
변환기능	있는 FQDN 형식으로 변환하는 기능
범용 ORS 연동 기능	- FQDN형식으로 변환된 OID를 범용 ORS에 질의
	하는 기능
	- 범용 ORS의 질의결과로 DNS NAPTR 레코드 반환기능
HS ODS	- 범용 ORS으로 부터 반환 받은 NAPTR 레코드에서
범용 ORS연동 결과분석 기능	세니스 타입별 특정응용을 위한 ORS 접속 정보 추출기능
	- 서비스 타입별 특정응용을 위한 ORS 접속 정보를
	질의 가능 형식으로 변환
특정응용을	- 서비스 타입별 특정응용을 위한 ORS 연동을
위한 ORS	통한 OID 정보획득
연동기능	※ 응용서비스 종류에 따라 특정응용을 위한 ORS
	연동기능이 다르게 구현되어야 한다.

상기 기능 요구사항을 토대로 전체 ORS 연동 클라이언트 개발을 위한 모듈 구성도는 아래와 같다.

(그림 2) 클라이언트 프로그램 모듈 구성도

(그림 2)에 표현된 총 6개 모듈에 대한 세부 구현내용을 살펴보면 다음과 같다.

① 입력 모듈 구현

OID값은 OID IRI 형식으로 입력 받으며, OID IRI 형식은 각 OID 노드 사이에 '/'를 넣어 OID 값을 표현한다.

(예) /2/27/9

② OID 변환 모듈 구현

OID IRI 형식의 OID 값을 DNS가 인식 할 수 있는 FQDN 형식으로 변경해 주어야 한다. FQDN 변환은 아래와 같이 2가지 방식으로 변환한다.

- o Canonical Form 형태인 "2/27/9"를 이용한 FQDN 변환.
 - 1. 제일 앞에 위치한 "/"를 삭제한다.
 - (예) /2/27/9 \rightarrow 2/27/9
 - 2. "/" 문자를 "."으로 변경한다.
 - (예) 2.27.9
 - 3. 문자열의 순서를 바꾼다.
 - (예) 9.27.2
 - 4. 제일 앞에 "ors-dummy."문자열을 추가한다.
 - (예) ors-dummy.9.27.2
 - 5. 제일 뒤에 ".ors-res.org." 문자열을 추가한다.
 - (예) ors-dummy.9.27.2.ors-res.org.
- o OID의 일반적인 형식인 "/joint-iso-itu-t/tag-based"를 이용한 FQDN 변환
- 1. 제일 앞에 위치한 "/"를 삭제한다.
 - (예) joint-iso-itu-t/tag-based
- 2. "/"문자를 "."으로 변경한다.
 - (예) joint-iso-itu-t.tag-based
- 3. 문자열의 순서를 바꾼다.
 - (예) tag-based.joint-iso-itu-t
- 4. 제일 앞에 "ors-dummy."문자열을 추가한다.
 - (예) ors-dummy.tag-based.joint-iso-itu-t
- 5. 제일 뒤에 ".ors-res.org." 문자열을 추가한다.
 - (예) ors-dummy.tag-based.joint-iso-itu-t.ors-res.org.

③ 범용 ORS 질의 모듈

범용 ORS에 질의가 가능하도록 변환된 FQDN 형식의 OID를 이용하여 범용 ORS에 NAPTR 타입의 질의를 한다.

o ORS 질의 형식

dig ors-dummy.9.27.2.oid-res.org. naptr

o ORS 질의 결과

ors-dummy.9.27.2.oid-res.org. 3600 IN NAPTR 0 100 "u" "ORS+COID" "!^.*\$!/2/27/9!" .

ors-dummy.9.27.2.oid-res.org. 3600 IN NAPTR 0 100 "u" "ORS+RINF" "!^.*\$!http://www.rfidcode.kr/ods_doc/rinfo.xml!" .

ors-dummy.9.27.2.oid-res.org. 3600 IN NAPTR 0 100 "u" "ORS+TINF" "!^.*\$!9.27.2.oid.kr!" .

ors-dummy.9.27.2.oid-res.org. 3600 IN NAPTR 0 100 "u" "ORS+CINF" "!^.*\$!http://www.rfidcode.kr/ods_doc/cinfo.xml!" .

④ 범용 ORS 연동 결과 분석 모듈

범용 ORS 질의결과로 표준에서 정의한 서비스 타입에따라 NAPTR 레코드 정보를 받게 되며 레코드 정보를 파싱하여 서비스 타입 분석하고 특정응용을 위한 접속방법 및 주소를 추출하여 특정응용을 위한 ORS에 질의가 가능하도록 한다.

<표 2> NAPTR 레코드 예

Order	Preference	Flags	Service	Regular expression	Replace ment
0	100	"u"	"ORS+COID"	"!^.*\$!/2/27/9!"	
0	100	"u"	"ORS+RINF	http://www.rfidcode.kr/ ods_doc/rinfo.xm	
0	100	"u"	"ORS+CINF"	http://www.rfidcode.kr/ ods_doc/cinfo.xm	
0	100	"u"	"ORS+TINF"	9.27.2.oid.kr	

⑤ DNS기반 특정응용을 위한 ORS 질의 모듈 범용 ORS 연동 결과 분석결과에 따라 NAPTR 레코드 중 서비스 타입이 TINFO인 값에 대해서 하위 도메인 질의를 통해 OID 코드를 추출한다. 다만, TINFO 서비스 타입에 대해서 국제표준에서 구체적으로 정의되지 않아 국내 정보통신단체표준인 TTAK.KO-06.0188 표준을 기반으로 구현하였다.

o ORS 질의 형식

dig 9.27.2.oid.kr. naptr

o ORS 질의 결과

9.27.2oid.kr. 86400 IN NAPTR 0 100 "U" "O2U+FFT:V100B1" "!^(.{4})(.{4})(.{8})\$!\\2.\\1.a.ods.or.kr.!" .

⑥ XML기반 특정응용을 위한 ORS 질의 모듈 범용 ORS 연동 결과 분석결과에 따라 NAPTR 레코드 중 서비스 타입이 CINFO, RINFO인 값에 대해서는 URL에 접속하여 XML 형식의 문서를 획득해야 한다.

3.2 클라이언트 구현 및 테스트

먼저 클라이언트 프로그램 개발 환경은 MS 원도우기반의 MFC 환경에서 개발되었으며 테스트 환경으로는 OID기반코드의 메타정보로 ROOT ORS 도메인인 oid-res.org이라는 이름으로 Zone 파일을 구성하고 테스트용 예제 OID인 {2 27 9}의 하위 ORS 질의 도메인 정보를 COID, TINFO, CINFO, RINFO 서비스 타입의 NATER 레코드로 정의하여 별도의 ORS를 구축하였다.

<표 3> 클라이언트 프로그램 개발 및 테스트 환경

구분	내용		
클라이언트	Windows 7, MS Visual Studio 2008		
개발			
ORS 구축	Solaris 7, bind 9		

클라이언트 프로그램 테스트를 위해서 우선 입력창에 OID IRI 형식으로 /2/27/9 입력한 후 검색 버튼을 클릭하여 연동 테스트를 실시하였다.

테스트 결과 3절에서 언급한 총 6개의 모듈처리로 통하여 아래의 (그림 3)과 같이 범용 ORS와 특정응용을 위한 ORS와 연동을 통하여 OID값에 대한 정보를 얻을 수 있었다.

(그림 3) 클라이언트 프로그램 테스트 결과

4. 결론 및 향후연구

본 연구에서는 OID IRI 입력 값에 대해 ORS를 연동하여 관련정보를 보여주는 클라이언트 프로그램을 설계 및 구현하였다. 그러나 현재 개발된 클라이언트는 ORS 연동을 위한 필수 기능을 테스트하기 위한 목적으로 원도우환경에만 맞게 개발되어 다양한 응용분야에서 적용하기위해서 환경에 맞게 별도의 프로그램을 개발해야 한다. 이에 향후 운영체계 및 개발환경에 독립적으로 실행 할 수있도록 ORS 연동을 위한 클라이언트 기능을 오픈API 형태로 개발하여 다양한 응용서비스에서 쉽게 ORS를 연동할 수 있도록 지원 할 계획이다.

참고문헌

- [1] ITU-T X.680 & ISO/IEC 8824-1 "Information technology
 Abstract Syntax Notation One(ASN.1): Specification of base notation", IUT-T & ISO/IEC, p5, July 2005.
- [2] Object identifiers(OIDs) and their registration authorities, IUT-T Handbook 2010
- [3] 이승재, 진충희, 김인혜, 노은희, "RFID, USN에서의 OID 해석시스템에 관한 연구", 한국통신학회논문지 '10-02 Vol. 35 No. 2
- [4] 안병호, "OID기반의 u-City, u-Health 분야 응용 서비스 모델연구", 한국인터넷진흥원, 2011
- [5] ISO/IEC 29168-1:2011, "Information technology -Open system interconnection - Part1 : object identifier resolution system"