
Integration Testing Approach using Usage Patterns of
Global Variables

Muhammad Iqbal Hossain, Youngsul Shin, Woo Jin Lee
 School of EECS, Kyungpook National University

E-mail : milon_mi7@yahoo.com

Abstract

Global variables can be read or modified by any part of the program, making it difficult to remember or
reason about every possible use. Sometime it has tight couplings between some of other variables, and couplings
between variables and functions. The main focus of this paper is to use call graph and the control flow analysis to
design a model from where we generate the test cases for testing global variables.

1. Introduction

Global variables are used extensively to pass information
between sections of code that do not share a caller/callee
relation. It is a common practice to use global variables to
simplify the code for the availability of it throughout the
code. However, global variables potentially cause many
issues such as lack of access control and implicit coupling,
which make the program more difficult to test. In data
sharing among the modules or parallel computing in
distributed system, it needs to be synchronized and track the
data dependencies of the global variables.

Asakura, Sugie [1] introduced a practical data sharing
method for global variables on the inter process
communication in distributed system. It calculates the
execution order among functions firstly and then to control
concurrently executable functions by synchronization
indicator Trigger. White and Leung [2] introduced a testing
and regression testing approach for global variables based
upon firewall concept for data flow module dependences. In
this approach they attempted to unify firewall concept for
both control flow testing and data flow testing but further
research is needed. Since the test values of global variables
are selected by an experienced developer, a sensitization
problem still remains. So the approach cannot be automated.
On the other hand for large program the complexity increases
and makes it difficult to keep track of the dependencies of the
global variables among the functions.

In comparison with the above approach, we have unified
the control flow testing and data flow testing by combining
reduced CFGs. We overcome the sensitization problem by
the extended call graph and thus the approach is being made
automated. Complexity of a program depends of the number
of paths. Large program contains a huge number of paths that
makes the testing procedure more complex. We introduced a
graph reduction criterion to minimize number of test paths.
The reduced graphs are combined in a single graph and
generate the model. This Test model ensures all path
execution for global variables.

2. Testing usage patterns of global variables

When a source code is given for testing global variables,
we parse the source code to find the global variables. A call
graph is generated from the source code. But call graph
doesn’t represent the number sequence or other information

for global variables. We implement an idea to extend the call
graph where the relationship between the functions is shown
with respect to global variables and callee function. Control
flow graph of the function is generated and reduce the graph
with different criteria. The reduction technique is used to
decrease the number of paths. After reduction, each graph is
combined and a Test model is generated.

We have divided the whole procedure in several parts.
Figure 1 shows an overview of our approach.

Source code
Generating call

graph
Generating control flow
graph for each function

Reduction of each control
flow graph

Combine all reduced
control flow graph

Test Model

Figure 1: Overview of the whole procedure.

Usually global variables are declared outside of a function.
This is because of the accessibility of the variable throughout
the program. When we parse the source code we look for the
variables which are declared outside of the function.

According to the global variables we construct a call
graph. A call graph allows the user to view the relationship
between the subroutines and the main function [3].
Specifically, each node represents a procedure and each
edge (f, g) indicates that procedure f calls procedure g. Thus,
a cycle in the graph indicates recursive procedure calls.
There are two kind of call graph: dynamic and static.
Dynamic call graph is a record of a single execution of the
program but static call graph represent all possible run of the
program. We consider static call graph to represent the
relationship between main and subroutine function.

3. Extended Call Graph

A static call graph doesn’t show the relationship with
respect to variable. It also doesn’t provide the sequence of
the subroutines. We extend this static call graph with the
definition-use concept of global variables. Global variables
can be defined and used several times in the function. We
need to find the functions where the global variables are
either defined or used and amend this information with the
call graph.

Figure 2 shows a sample call graph of producer-consumer
problem, extended by our approach. It describes the

제37회 한국정보처리학회 춘계학술대회 논문집 제19권 1호 (2012. 4)

- 1213 -

relationship between the functions and the definition-use of
the global variables [4]. In Figure 2 solid line represent
function call and dotted line represent definition-use of
global variables. We find that counter and mutex are declared
as global variables. Counter is defined in main, insert_item
and remove_item functions and used in insert_item and
remove_item function. In similar manner mutex is defined in
main function and used in producer, consumer,
pthread_mutex_lock and pthread_mutex_unlock function. As
we can see sem_wait have no relationship with any of the
global variables so omission of sem_wait will not affect our
process.

main

producer consumer

insert_item remove_item

pthread_create

sem_wait

pthread_mutex_lock pthread_mutex_unlock

counter mutex

Figure 2: Extended call graph

4. Combined CFG by reduction

We generate control flow graph of all the function which
have a relationship in the call graph (as shown in Figure 2). A
control flow graph is a data structure built on top of the
intermediate code representation abstracting the control flow
behavior of compiled function [5]. It is an oriented graph
where nodes are basic blocks and edges represent possible
control flows from one basic block to another.

For testing global variables we combine the entire control
flow graph in a single graph which is called a model. The
main problem of this approach is the excessive number of
paths. When we generate test cases from the model it will be
very difficult and complex for covering all paths of the
model. We introduce a mechanism that reduces the control
flow graph with respect to the global variables and callee
function.

A function contains a huge number of conditional,
iteration, switch and assignment statements those results the
large number of paths. We just consider those statements
which are directly or indirectly related to the global variables,
others are reduced in our defined criteria.

Sequence reduction: The first criterion is divides the
statements into a basic block. Basic block is a maximal
sequence of the statement such that if
and are two adjacent statements in this sequence and
no definition-use of global variables are executed. The
execution of is always immediately followed by the
execution of .
Loop reduction: Loop in a program has a great effect on
the number of paths. We use some optimization
technique on the loops where there is no effect of global
variables. Loop fusion, loop interchange, loop tiling,
loop unrolling are the most common techniques for loop
optimization [6].
Branch reduction: Lastly branch optimization technique
is used to reduce the number of if-else or switch
statements. If a switch or if-else statement is not related

with global variables or callee function, we implement
branch optimization technique.

1

2

3

4 5

6

9

10

11

13

17

20

counter

main

producer

Insert_item

22

23

24

26

consumer

30

31

Remove_item

mutex

Figure 3: Combination of reduced CFG

Using these criterions we generate reduced control flow
graph for each function. Finally according to the call graph
we combine the entire reduced control flow graph as shown
in Figure 3. This is our Test model which is used for
generating test cases. In Figure 3 the solid line (Bold)
represent function call, dotted line represent definition-use of
global variables.

5. Conclusion and Future Work

We have discussed the side effect of global variables and
an approach to test global variables. In functional testing we
identify the global variables and generate an extended call
graph with respect to the global variables. We use definition-
use relationship for identifying the relationship among the
subroutines. Then we generate control flow diagram for each
function and with criterion technique reduce the graph.
Finally we combine all reduced graph and generate a test
model for generating test cases for the global variables.

In the future work we will introduce a technique to
generated test cases from this model. The control flow graph
reduction technique needs more research to assure the least
optimization of the graph.

Acknowledgement
 IT

(NIPA-2012-
C6150-1202-0011)

Reference
[1] Koichi Asakura, Toyohide Watanabe and Noboru Sugie, “An execution

order control method of distributed processes for sharing global
variables,” IEEE Region 10's Ninth Annual International Conference on
Frontiers of Computer Technology, pp.156–160, August 1994.

[2] Lee j. White and Hareton K.N Leung, “A firewall concept for both
control-flow and data-flow in regression integration testing,” IEEE
Conference on Software Maintenance, pp. 262–271, November 1992.

[3] Barbara G. Ryder, “Constructing the Call Graph of a Program,” IEEE
Transactions on Software Engineering, vol. SE-5, pp. 216–226, May
1979.

[4] Pu Yun-ming and Fan Ming-hong, “The research of a new software
testing model,” 2nd International Conference on Anti-counterfeiting,
Security and Identification, pp. 67 – 70, August 2008.

[5] Franz Wotawa and Willibald Krenn, “Knowledge Extraction from C-
Code,” Fifth Workshop on Intelligent Solutions in Embedded Systems,
pp. 49–60, June 2007.

[6] Michael E. Wolf, Dror E. Maydan and Ding-Kai Chen, “Combining loop
transformations considering caches and scheduling,” MICRO-29.
Proceedings of the 29th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 274–286, December 1996.

제37회 한국정보처리학회 춘계학술대회 논문집 제19권 1호 (2012. 4)

- 1214 -

