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To ensure the correctness of high performance satisfiability (SAT) solvers, several proof formats have been 
proposed. SAT solvers can report a formula being unsatisfiable with a proof, which can be independently verified 
by a trusted proof checker. Among the proof formats accepted at the SAT competition, the Reverse Unit 
Propagation (RUP) format is considered the most popular. However, the official proof checker was not efficient 
and failed to check many of the proofs at the competition. This inefficiency is one of the drawbacks of SAT proof 
checking. In this paper, I introduce a work-in-progress project, vercheck to implement an efficient RUP checker 
using modern SAT solving techniques. Even though my implementation is larger and more complex, the level of 
trust is preserved by statically verifying the correctness of the code. The vercheck program is written in GURU, a 
dependently typed functional programming language with a low-level resource management feature. 

1. Introduction 

Satisfiability (SAT) solvers are automated propositional 
theorem provers and are widely used in several fields such as 
formal verification and artificial intelligence, due to their 
high performance. Mainstream SAT solvers are highly 
optimized and usually written in C/C++. To ensure the 
correctness of those high performance SAT solvers, it is 
desirable for SAT solvers to provide certificates, which can 
be independently verified by a trusted checker. For satisfiable 
formulas, most SAT solvers can produce candidate models. 
And, for unsatisfiable formulas, some solvers can produce 
proofs refuting the input formulas. Several proof formats 
have been proposed for unsatisfiability certificates. Among 
the proof formats accepted at the SAT competition, the 
Reverse Unit Propagation (RUP) format is considered the 
most popular [1]. However, the official proof checker was 
not efficient and failed to check many of the proofs within 
the given timeout at the competition [2]. An efficient RUP 
checker implementation would require a sophisticated SAT 
solving feature, called two-literal watch lists [3]. Instead of 
trusting such complex software, the official proof checker 
translates proofs into a resolution-based format and checks 
them using a simple trusted resolution checker. Although this 
method keeps the size of trusted base small, the translation 
process wastes time and space. That is the main reason of the 
inefficiency of the official RUP proof checker.  

This paper introduces a work-in-progress project, called 
vercheck to implement an efficient RUP checker that checks 
RUP proofs directly without translation. The vercheck 
program implements the two-literal watched lists data 
structure and other optimizations for efficiency. Although the 
complexity of vercheck will be much higher than the existing 

simple resolution checker, a formal verification technique is 
used to ensure the correctness of the vercheck program. A 
verified efficient proof checker can check bigger proofs 
generated from more difficult formulas and also refreshen the 
interests in the certified track of the SAT competition, which 
has not been held since 2007.  

The vercheck program is being developed and verified in 
a dependently typed functional programming language, 
called GURU [4]. GURU also provides a way to safely 
manage imperative data structures and generate efficient 
code [5]. The program reuses some of the code from my 
previous work, called versat, which is a verified SAT solver 
[6]. As a specification, the propositional resolution rule is 
defined as the basic inference rule. And the goal is to prove 
that whenever the RUP inference checker certifies a clause, 
there exists a resolution proof of the clause. Note that the 
proof is not generated at run-time. Instead, ensures that such 
a proof can be always computable.  

2. Background 

2.1 The RUP Proof Format 

The Reverse Unit Propagation (RUP) proof format has 
been proposed by Van Gelder as an efficient propositional 
proof representation scheme [7]. RUP is an inference rule 
that concludes F  C when (F ¬C) is refutable using only 
unit resolution, which is similar to standard binary resolution 
except that one of the two resolved clauses is required to be a 
unit clause. Unit resolution is not refutation complete in 
general, but it has been shown that conflict clauses generated 
from standard conflict-analysis algorithms are indeed RUP 
inferences [7]. If a clause is a RUP inference, a unit-
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resolution proof deriving the clause can be calculated from 
that clause, itself. Potentially, a long resolution proof of a 
RUP inference can be compressed to the concluded clause. 
Also, an efficient RUP inference checker can be 
implemented using the two-literal watch lists, a standard unit 
propagation algorithm used in most SAT solvers [8]. A 
complete RUP proof is a sequence of clauses (lemmas) with 
the last one being the empty clause. And the sequence of 
clauses are checked incrementally one clause at a time. Each 
clause C is checked with respect to the RUP inference rule, 
where F is the original formula and the clauses that have 
been checked previously. Even though all correct lemmas are 
logically true in the input formula, RUP inference is so weak 
that intermediate clauses are necessary as stepping stones 
leading to the empty clause. For example, here is an 
unsatisfiable formula in the Conjunctive Normal Form 
(CNF): (p  q)  (p ¬q)  (¬p  q)  (¬p ¬q).
That formula can be encoded in the DIMACS format, which 
a standard input format used at the SAT competition, as 
below:  
 1 2 0     1 -2 0     -1 2 0     -1 -2 0  

Positive numbers represent propositional variables and 
negative numbers are negated variables. The variables p and 
q are renamed as 1 and 2, respectively. A zero indicates the 
end of each clause. Now, consider a RUP proof of the 
formula below:  
1 0   
0

The RUP proof format has a similar syntax as the 
DIMCAS format. The proof above has two clauses (RUP 
inferences). Because the input formula does not have a unit 
clause, the empty clause cannot be a RUP inference directly 
from the input formula. So, at least one intermediate clause is 
necessary. The first proof clause is a unit clause 1. Assume 
the negation of the clause, which is -1. The assumed clause -
1 and the first clause of the formula concludes 2 by unit 
resolution, and similarly, -1 and the second clause concludes 
-2. Finally, 2 and -2 are contradictory. So, 1 is a RUP 
inference. Once a clause is verified, it is kept as a lemma and 
may be used in the later inferences. Using the clause just 
verified, the empty clause can be checked in a similar fashion, 
resolving 1 with the third and forth input clauses ans so on.  

2.2 Related Works 

The Isabelle theorem prover has been used to verify SAT 
and Satisfiability Modulo Theories (SMT) proofs [9, 10]. 
Such a theorem prover with a small kernel has a high 
assurance, however, proofs from SAT/SMT solvers have to 
be translated and reconstructed into the theorem prover’s 
proof language. Thus, those systems have the same 
performance limitation due to proof translation.  

More closely related work is Darbari et al.’s TraceCheck 
proof checker that is verified in the Coq theorem prover [11]. 
TraceCheck is another SAT proof format supported by 
PicoSAT, an open source state-of-the-art SAT solver [12]. A 
TraceCheck proof is a sequence of lemmas and each lemma 
is a list of clause names. To check a lemma, those clauses 
mentions are resolved one after another. The conclusions of 
resolutions are implicit in the proof and it is the checker’s 

responsibility to calculate the resolvent of each resolution. 
They proved that their resolvent computation is correct, and 
they extracted an OCaml code from the Coq implementation 
for faster execution and portable compilation. Compared to 
TraceCheck, the RUP format is easier to be instrumented in 
an existing SAT solver, because the solver can simply dump 
all the deduced lemmas and that will be a RUP proof.  

3. The GURU Programming Language 

GURU is a functional programming language with 
dependent types, in which programs can be verified by 
means of type checking1. With dependent types, for example, 
we can define an indexed data type for lists. A type index is a 
program value occurring in the type, in this case the length of 
the list. We define the type <vec A n> to be the type of lists 
storing elements of type A, and having length n, where n is a 
Peano (i.e., unary) number:  
Inductive vec : Fun(A:type)(n:nat).type :=   
| vecn : Fun(A:type).<vec A Z>   
| vecc : Fun(A:type)(spec n:nat)   
            (a:A)(l:<vec A n>). <vec A (S n)>  

This states that vec is inductively defined with 
constructors vecn and vecc. The return type of vecc is <vec A 
(S n)>, where S is the successor function. So the length of the 
list returned by the constructor vecc is one greater than the 
length of the sublist l. Note that the argument n (of vecc) is 
labeled “spec”, which means specificational. GURU will 
enforce that no run-time results will depend on the value of 
this argument, thus enabling the compiler to erase all values 
for that parameter in compiled code.  

We can now define the type of vec_append function on 
vectors:  
vec_append : Fun(A:type)(spec n m:nat)   
                (l1:<vec A n>)(l2:<vec A m>).   
                <vec A (plus n m)>  

This type states that append takes in a type A, two 
specificational natural numbers n and m, and vectors l1 and 
l2 of the corresponding lengths, and returns a new vector of 
length (plus n m). This is how the relationship between 
lengths can be expressed using dependent types. Type-
checking code like this may require the programmer to prove 
that two types are equivalent. For example, a proof of 
commutativity of addition is needed to prove <vec A (plus n 
m)> equivalent to <vec A (plus m n)>. Currently, these 
proofs must mostly be written by the programmer, using 
special proof syntax, including syntax for inductive proofs.  

GURU supports memory-safe programming without full 
memory garbage collection, using a combination of 
techniques [5]. Immutable tree-like data structures are 
handled by reference counting, with some optimizations to 
avoid unnecessary increments/decrements. Mutable data 
structures like arrays are handled by statically enforcing a 
readers/writers discipline: either there is a unique reference 
available for reading and writing the array, or else there may 
be multiple read-only references. The one-writer discipline 
ensures that it is sound to implement array update 
destructively, while using a pure functional model for formal 
reasoning. The connection between the efficient 
                                                          
1 Guru is downloadable from http://www.guru-lang.org/. 
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implementation and the functional model is not formally 
verified, and must be trusted. This is reasonable, as it 
concerns only a small amount of simple C code (less than 50 
lines), for a few primitive operations like indexing a C array 
and managing memory/pointers.  

4. Specification

Checking a RUP inference is computationally complex 
requiring the checker to search for an appropriate sequence 
of unit resolutions. Instead of formalizing the RUP inference 
directly, vercheck’s specification is based on two simpler 
inference rules: resolution and hypothesis. Then, I formalized 
the correctness of the code checking a single RUP inference 
(a RUP clause) as there exists a resolution proof of the clause. 
Although the idea is very similar to the proof translation, 
vercheckdoes not create resolution proofs at run-time. Rather, 
the existence of such resolution proofs is to be proved 
statically from the invariants of the vercheck code.  

4.1 Inference System 

Figure 1 shows the important definitions for the 
propositional inference system, which is encoded as the data 
type pf. The word type is the 32-bit machine integer type 
built in GURU. The negative integer values represent the 
negated propositional variables, in the same way that 
mainstream SAT solvers represent literals. The eq_lit 
function compares two integers and the negated function 
changes the sign of integer. The standard polymorphic list 
type and some of related functions such as member and 
list_subset are defined in the GURU’s standard library. The 
member function checks the membership of an item in a list 
with respect to the given equality relation, and list_subset 
similarly checks if all members of a list are in the other list. 
The cl_erase function removes all the occurrences of a literal 
from the given clause. The expressions between curly braces 
{A = B} are equality types meaning A and B are provably 
equal. And tt is a boolean constant for “true”.  

The <pf F C> type is a dependent type indexed by a 
formula F and a clause C, and it represents the judgement F 

 C. Any value of the type <pf F C> is meant to be a proof of 
F  C. The constructors, pf_asm, pf_res and pf_hyp, encode 
inference rules with necessary conditions, namely 
assumption, resolution and hypothesis rules, respectively. 
The assumption rule can conclude any clause in the input 
formula, and the resolution rule concludes a resolvent of two 
proven clauses over a specified pivot literal. The hypothesis 
rule concludes the clause l  C (encoded as ¬l  C), 
when C can be proved under the hypothesis of l. Thus, 
constructing such a data structure of type <pf F C> is 
essentially proof checking.  

4.2 Typing RUP Checking Function 

Figure 2 shows the typing of the rup_check function, 
which checks each RUP inference. It has three input 
arguments: the input formula F, the current checker’s state s, 
and the clause c to check. The state s is a blackbox data 
structure to store the internal SAT solver’s state. The return 

type of the function is <check_t F C A>, which is indexed by 
the input formula, the clause to check, and the type of the 
blackbox. The blackbox does not affect the correctness. It 
just allows the check function to return the updated internal 
state as part of the return value. Whenever a RUP inference is 
checked, the implementation needs to update its state and 
store the RUP clause as a lemma in its clause database. A 
check_t value has two cases: check_fail and check_ok. The 
check_fail case means the checker failed to verify the RUP 
inference. On the other hand, the check_ok case means the 
checker verified the RUP inference and a proof data structure 
for the clause C is provided as the evidence. Note that the 
proof p is marked as specificational using the spec keyword. 
So, the proof data structure will not be created at run-time. 
Instead, GURU compiler guarantees that it is always 
computable by check that the value is only dependent on the 
invariants of the program. So, the type of rup_check defines 
the correct RUP checker. Now, it is all up to the 
implementation to efficiently implement the checker and 
prove (in GURU) its correctness.  

Inductive check_t : Fun(F:formula)(C:clause)   
                       (A:type). type :=   
| check_fail: Fun(spec F:formula)(spec C:clause)  
                 (A:type)(s:A).   
                 <check_t F C A>   
| check_ok  : Fun(spec F:formula)(spec C:clause)  
                 (A:type)(s:A)(spec p:<pf F C>).   
                 <check_t F C A>   

rup_check : Fun(spec F:formula)   
               (s:<CheckerState F>)(c:clause).   
               <check_t F c <CheckerState F>>  

(Figure 2) check_t type and rup_check function type 

Define lit := word   
Define clause := <list lit>   
Define formula := <list clause>   

Define cl_subsume := fun(c1:clause)(c2:clause).  
  (list_subset lit eq_lit c1 c2)   

Define is_resolvent :=   
  fun(r:clause)(c1:clause)(c2:clause)(l:lit).   
  (and (and (member (negated l) c1 eq_lit)   
            (member l c2 eq_lit))   
       (and (cl_subsume (cl_erase c1 (negated l)) 

r)   
            (cl_subsume (cl_erase c2 l) r)))   

Inductive pf : Fun(F:formula)(C:clause).type :=  
| pf_asm : Fun(F:formula)(C:clause)   
              (u:{ (member C F eq_clause) = tt }).  
               <pf F C>   
| pf_res : Fun(F:formula)(C C1 C2:clause)(l:lit)  
              (d1:<pf F C1>)(d2:<pf F C2>)   
              (u:{ (is_resolvent C C1 C2 l) = 

tt }).   
              <pf F C>   
| pf_hyp : Fun(F:formula)(l:lit)(C:clause)   
              (d:<pf (cons (cons l nil) F) C>).   
              <pf F (cons (negated l) C)>  

(Figure 1) The pf data type and helper definitions 
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5. Current Status 

In this section, I’ll give an overview of how vercheck 
works and the current status. Suppose a clause C is a correct 
RUP inference, and F is the union of the input formula and 
the previously checked RUP clauses learned as lemmas. 
Under this hypothesis ¬C, the unit propagation operation 
should find a contradiction in the input formula F and the 
hypothesis. Let C be l1  l2  ln. Then, the hypothesis 
is ¬l1 ¬l2 ¬ln. First, versat assigns those variables in 
li s so that all li s are true. Then, versat performs unit 
propagation, and it should find a conflicting clause D, which 
is a clause in F that is falsified under the hypothesis. That is 
an ordinary functionality of versat as a SAT solver. From the 
fact that D is false under the hypothesis, we can construct a 
proof of F ¬C ¬D. Second, in vercheck, we need to 
deduce F ¬C , which is true because D is in F . At the 
time of writing this paper, vercheck has to explicitly perform 
the resolutions to prove the empty clause ( ). This explicit 
resolution can be avoided by proving a sophisticated 
invariant of the program, which tells that every variable 
hypothetically assigned a truth value has a unit clause 
supporting that assignment. From that invariant, the empty 
clause can be immediately proved from any clause 
conflicting under the current assignments without performing 
resolutions. Finally, the hypothesis rule is applied to derive F 

¬C , which is F  C. That process verifies the RUP 
inference C using the existing efficient unit propagation code 
and simple inference rules.  

6. Conclusion 

Formal verification technique is usually used to reduce the 
size of trusted base and increase the level of confidence in a 
system. However, the official RUP checker used at the SAT 
competition is already small and trusted. Here, the challenge 
is to implement a more efficient checker that is as 
trustworthy as before. In vercheck, formal verification 
technique is used to improve the performance over the 
existing proof checker without increasing the size of trusted 
base. And it is also an interesting engineering case study in 
the dependent typed programming field, because the existing 
versat code is reused in a different context, and the properties 
of the code are reinterpreted for the new software, vercheck.  
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