
Implementing a Verified Efficient RUP Checker

e-mail : duckki-oe@uiowa.edu

Implementing a Verified Efficient RUP Checker

Duckki Oe
Dept. of Computer Science, The University of Iowa

To ensure the correctness of high performance satisfiability (SAT) solvers, several proof formats have been
proposed. SAT solvers can report a formula being unsatisfiable with a proof, which can be independently verified
by a trusted proof checker. Among the proof formats accepted at the SAT competition, the Reverse Unit
Propagation (RUP) format is considered the most popular. However, the official proof checker was not efficient
and failed to check many of the proofs at the competition. This inefficiency is one of the drawbacks of SAT proof
checking. In this paper, I introduce a work-in-progress project, vercheck to implement an efficient RUP checker
using modern SAT solving techniques. Even though my implementation is larger and more complex, the level of
trust is preserved by statically verifying the correctness of the code. The vercheck program is written in GURU, a
dependently typed functional programming language with a low-level resource management feature.

1. Introduction

Satisfiability (SAT) solvers are automated propositional
theorem provers and are widely used in several fields such as
formal verification and artificial intelligence, due to their
high performance. Mainstream SAT solvers are highly
optimized and usually written in C/C++. To ensure the
correctness of those high performance SAT solvers, it is
desirable for SAT solvers to provide certificates, which can
be independently verified by a trusted checker. For satisfiable
formulas, most SAT solvers can produce candidate models.
And, for unsatisfiable formulas, some solvers can produce
proofs refuting the input formulas. Several proof formats
have been proposed for unsatisfiability certificates. Among
the proof formats accepted at the SAT competition, the
Reverse Unit Propagation (RUP) format is considered the
most popular [1]. However, the official proof checker was
not efficient and failed to check many of the proofs within
the given timeout at the competition [2]. An efficient RUP
checker implementation would require a sophisticated SAT
solving feature, called two-literal watch lists [3]. Instead of
trusting such complex software, the official proof checker
translates proofs into a resolution-based format and checks
them using a simple trusted resolution checker. Although this
method keeps the size of trusted base small, the translation
process wastes time and space. That is the main reason of the
inefficiency of the official RUP proof checker.

This paper introduces a work-in-progress project, called
vercheck to implement an efficient RUP checker that checks
RUP proofs directly without translation. The vercheck
program implements the two-literal watched lists data
structure and other optimizations for efficiency. Although the
complexity of vercheck will be much higher than the existing

simple resolution checker, a formal verification technique is
used to ensure the correctness of the vercheck program. A
verified efficient proof checker can check bigger proofs
generated from more difficult formulas and also refreshen the
interests in the certified track of the SAT competition, which
has not been held since 2007.

The vercheck program is being developed and verified in
a dependently typed functional programming language,
called GURU [4]. GURU also provides a way to safely
manage imperative data structures and generate efficient
code [5]. The program reuses some of the code from my
previous work, called versat, which is a verified SAT solver
[6]. As a specification, the propositional resolution rule is
defined as the basic inference rule. And the goal is to prove
that whenever the RUP inference checker certifies a clause,
there exists a resolution proof of the clause. Note that the
proof is not generated at run-time. Instead, ensures that such
a proof can be always computable.

2. Background

2.1 The RUP Proof Format

The Reverse Unit Propagation (RUP) proof format has
been proposed by Van Gelder as an efficient propositional
proof representation scheme [7]. RUP is an inference rule
that concludes F C when (F ¬C) is refutable using only
unit resolution, which is similar to standard binary resolution
except that one of the two resolved clauses is required to be a
unit clause. Unit resolution is not refutation complete in
general, but it has been shown that conflict clauses generated
from standard conflict-analysis algorithms are indeed RUP
inferences [7]. If a clause is a RUP inference, a unit-

제37회 한국정보처리학회 춘계학술대회 논문집 제19권 1호 (2012. 4)

- 1176 -

resolution proof deriving the clause can be calculated from
that clause, itself. Potentially, a long resolution proof of a
RUP inference can be compressed to the concluded clause.
Also, an efficient RUP inference checker can be
implemented using the two-literal watch lists, a standard unit
propagation algorithm used in most SAT solvers [8]. A
complete RUP proof is a sequence of clauses (lemmas) with
the last one being the empty clause. And the sequence of
clauses are checked incrementally one clause at a time. Each
clause C is checked with respect to the RUP inference rule,
where F is the original formula and the clauses that have
been checked previously. Even though all correct lemmas are
logically true in the input formula, RUP inference is so weak
that intermediate clauses are necessary as stepping stones
leading to the empty clause. For example, here is an
unsatisfiable formula in the Conjunctive Normal Form
(CNF): (p q) (p ¬q) (¬p q) (¬p ¬q).
That formula can be encoded in the DIMACS format, which
a standard input format used at the SAT competition, as
below:
 1 2 0 1 -2 0 -1 2 0 -1 -2 0

Positive numbers represent propositional variables and
negative numbers are negated variables. The variables p and
q are renamed as 1 and 2, respectively. A zero indicates the
end of each clause. Now, consider a RUP proof of the
formula below:
1 0
0

The RUP proof format has a similar syntax as the
DIMCAS format. The proof above has two clauses (RUP
inferences). Because the input formula does not have a unit
clause, the empty clause cannot be a RUP inference directly
from the input formula. So, at least one intermediate clause is
necessary. The first proof clause is a unit clause 1. Assume
the negation of the clause, which is -1. The assumed clause -
1 and the first clause of the formula concludes 2 by unit
resolution, and similarly, -1 and the second clause concludes
-2. Finally, 2 and -2 are contradictory. So, 1 is a RUP
inference. Once a clause is verified, it is kept as a lemma and
may be used in the later inferences. Using the clause just
verified, the empty clause can be checked in a similar fashion,
resolving 1 with the third and forth input clauses ans so on.

2.2 Related Works

The Isabelle theorem prover has been used to verify SAT
and Satisfiability Modulo Theories (SMT) proofs [9, 10].
Such a theorem prover with a small kernel has a high
assurance, however, proofs from SAT/SMT solvers have to
be translated and reconstructed into the theorem prover’s
proof language. Thus, those systems have the same
performance limitation due to proof translation.

More closely related work is Darbari et al.’s TraceCheck
proof checker that is verified in the Coq theorem prover [11].
TraceCheck is another SAT proof format supported by
PicoSAT, an open source state-of-the-art SAT solver [12]. A
TraceCheck proof is a sequence of lemmas and each lemma
is a list of clause names. To check a lemma, those clauses
mentions are resolved one after another. The conclusions of
resolutions are implicit in the proof and it is the checker’s

responsibility to calculate the resolvent of each resolution.
They proved that their resolvent computation is correct, and
they extracted an OCaml code from the Coq implementation
for faster execution and portable compilation. Compared to
TraceCheck, the RUP format is easier to be instrumented in
an existing SAT solver, because the solver can simply dump
all the deduced lemmas and that will be a RUP proof.

3. The GURU Programming Language

GURU is a functional programming language with
dependent types, in which programs can be verified by
means of type checking1. With dependent types, for example,
we can define an indexed data type for lists. A type index is a
program value occurring in the type, in this case the length of
the list. We define the type <vec A n> to be the type of lists
storing elements of type A, and having length n, where n is a
Peano (i.e., unary) number:
Inductive vec : Fun(A:type)(n:nat).type :=
| vecn : Fun(A:type).<vec A Z>
| vecc : Fun(A:type)(spec n:nat)
 (a:A)(l:<vec A n>). <vec A (S n)>

This states that vec is inductively defined with
constructors vecn and vecc. The return type of vecc is <vec A
(S n)>, where S is the successor function. So the length of the
list returned by the constructor vecc is one greater than the
length of the sublist l. Note that the argument n (of vecc) is
labeled “spec”, which means specificational. GURU will
enforce that no run-time results will depend on the value of
this argument, thus enabling the compiler to erase all values
for that parameter in compiled code.

We can now define the type of vec_append function on
vectors:
vec_append : Fun(A:type)(spec n m:nat)
 (l1:<vec A n>)(l2:<vec A m>).
 <vec A (plus n m)>

This type states that append takes in a type A, two
specificational natural numbers n and m, and vectors l1 and
l2 of the corresponding lengths, and returns a new vector of
length (plus n m). This is how the relationship between
lengths can be expressed using dependent types. Type-
checking code like this may require the programmer to prove
that two types are equivalent. For example, a proof of
commutativity of addition is needed to prove <vec A (plus n
m)> equivalent to <vec A (plus m n)>. Currently, these
proofs must mostly be written by the programmer, using
special proof syntax, including syntax for inductive proofs.

GURU supports memory-safe programming without full
memory garbage collection, using a combination of
techniques [5]. Immutable tree-like data structures are
handled by reference counting, with some optimizations to
avoid unnecessary increments/decrements. Mutable data
structures like arrays are handled by statically enforcing a
readers/writers discipline: either there is a unique reference
available for reading and writing the array, or else there may
be multiple read-only references. The one-writer discipline
ensures that it is sound to implement array update
destructively, while using a pure functional model for formal
reasoning. The connection between the efficient

1 Guru is downloadable from http://www.guru-lang.org/.

제37회 한국정보처리학회 춘계학술대회 논문집 제19권 1호 (2012. 4)

- 1177 -

implementation and the functional model is not formally
verified, and must be trusted. This is reasonable, as it
concerns only a small amount of simple C code (less than 50
lines), for a few primitive operations like indexing a C array
and managing memory/pointers.

4. Specification

Checking a RUP inference is computationally complex
requiring the checker to search for an appropriate sequence
of unit resolutions. Instead of formalizing the RUP inference
directly, vercheck’s specification is based on two simpler
inference rules: resolution and hypothesis. Then, I formalized
the correctness of the code checking a single RUP inference
(a RUP clause) as there exists a resolution proof of the clause.
Although the idea is very similar to the proof translation,
vercheckdoes not create resolution proofs at run-time. Rather,
the existence of such resolution proofs is to be proved
statically from the invariants of the vercheck code.

4.1 Inference System

Figure 1 shows the important definitions for the
propositional inference system, which is encoded as the data
type pf. The word type is the 32-bit machine integer type
built in GURU. The negative integer values represent the
negated propositional variables, in the same way that
mainstream SAT solvers represent literals. The eq_lit
function compares two integers and the negated function
changes the sign of integer. The standard polymorphic list
type and some of related functions such as member and
list_subset are defined in the GURU’s standard library. The
member function checks the membership of an item in a list
with respect to the given equality relation, and list_subset
similarly checks if all members of a list are in the other list.
The cl_erase function removes all the occurrences of a literal
from the given clause. The expressions between curly braces
{A = B} are equality types meaning A and B are provably
equal. And tt is a boolean constant for “true”.

The <pf F C> type is a dependent type indexed by a
formula F and a clause C, and it represents the judgement F

 C. Any value of the type <pf F C> is meant to be a proof of
F C. The constructors, pf_asm, pf_res and pf_hyp, encode
inference rules with necessary conditions, namely
assumption, resolution and hypothesis rules, respectively.
The assumption rule can conclude any clause in the input
formula, and the resolution rule concludes a resolvent of two
proven clauses over a specified pivot literal. The hypothesis
rule concludes the clause l C (encoded as ¬l C),
when C can be proved under the hypothesis of l. Thus,
constructing such a data structure of type <pf F C> is
essentially proof checking.

4.2 Typing RUP Checking Function

Figure 2 shows the typing of the rup_check function,
which checks each RUP inference. It has three input
arguments: the input formula F, the current checker’s state s,
and the clause c to check. The state s is a blackbox data
structure to store the internal SAT solver’s state. The return

type of the function is <check_t F C A>, which is indexed by
the input formula, the clause to check, and the type of the
blackbox. The blackbox does not affect the correctness. It
just allows the check function to return the updated internal
state as part of the return value. Whenever a RUP inference is
checked, the implementation needs to update its state and
store the RUP clause as a lemma in its clause database. A
check_t value has two cases: check_fail and check_ok. The
check_fail case means the checker failed to verify the RUP
inference. On the other hand, the check_ok case means the
checker verified the RUP inference and a proof data structure
for the clause C is provided as the evidence. Note that the
proof p is marked as specificational using the spec keyword.
So, the proof data structure will not be created at run-time.
Instead, GURU compiler guarantees that it is always
computable by check that the value is only dependent on the
invariants of the program. So, the type of rup_check defines
the correct RUP checker. Now, it is all up to the
implementation to efficiently implement the checker and
prove (in GURU) its correctness.

Inductive check_t : Fun(F:formula)(C:clause)
 (A:type). type :=
| check_fail: Fun(spec F:formula)(spec C:clause)
 (A:type)(s:A).
 <check_t F C A>
| check_ok : Fun(spec F:formula)(spec C:clause)
 (A:type)(s:A)(spec p:<pf F C>).
 <check_t F C A>

rup_check : Fun(spec F:formula)
 (s:<CheckerState F>)(c:clause).
 <check_t F c <CheckerState F>>

(Figure 2) check_t type and rup_check function type

Define lit := word
Define clause := <list lit>
Define formula := <list clause>

Define cl_subsume := fun(c1:clause)(c2:clause).
 (list_subset lit eq_lit c1 c2)

Define is_resolvent :=
 fun(r:clause)(c1:clause)(c2:clause)(l:lit).
 (and (and (member (negated l) c1 eq_lit)
 (member l c2 eq_lit))
 (and (cl_subsume (cl_erase c1 (negated l))

r)
 (cl_subsume (cl_erase c2 l) r)))

Inductive pf : Fun(F:formula)(C:clause).type :=
| pf_asm : Fun(F:formula)(C:clause)
 (u:{ (member C F eq_clause) = tt }).
 <pf F C>
| pf_res : Fun(F:formula)(C C1 C2:clause)(l:lit)
 (d1:<pf F C1>)(d2:<pf F C2>)
 (u:{ (is_resolvent C C1 C2 l) =

tt }).
 <pf F C>
| pf_hyp : Fun(F:formula)(l:lit)(C:clause)
 (d:<pf (cons (cons l nil) F) C>).
 <pf F (cons (negated l) C)>

(Figure 1) The pf data type and helper definitions

제37회 한국정보처리학회 춘계학술대회 논문집 제19권 1호 (2012. 4)

- 1178 -

5. Current Status

In this section, I’ll give an overview of how vercheck
works and the current status. Suppose a clause C is a correct
RUP inference, and F is the union of the input formula and
the previously checked RUP clauses learned as lemmas.
Under this hypothesis ¬C, the unit propagation operation
should find a contradiction in the input formula F and the
hypothesis. Let C be l1 l2 ln. Then, the hypothesis
is ¬l1 ¬l2 ¬ln. First, versat assigns those variables in
li s so that all li s are true. Then, versat performs unit
propagation, and it should find a conflicting clause D, which
is a clause in F that is falsified under the hypothesis. That is
an ordinary functionality of versat as a SAT solver. From the
fact that D is false under the hypothesis, we can construct a
proof of F ¬C ¬D. Second, in vercheck, we need to
deduce F ¬C , which is true because D is in F . At the
time of writing this paper, vercheck has to explicitly perform
the resolutions to prove the empty clause (). This explicit
resolution can be avoided by proving a sophisticated
invariant of the program, which tells that every variable
hypothetically assigned a truth value has a unit clause
supporting that assignment. From that invariant, the empty
clause can be immediately proved from any clause
conflicting under the current assignments without performing
resolutions. Finally, the hypothesis rule is applied to derive F

¬C , which is F C. That process verifies the RUP
inference C using the existing efficient unit propagation code
and simple inference rules.

6. Conclusion

Formal verification technique is usually used to reduce the
size of trusted base and increase the level of confidence in a
system. However, the official RUP checker used at the SAT
competition is already small and trusted. Here, the challenge
is to implement a more efficient checker that is as
trustworthy as before. In vercheck, formal verification
technique is used to improve the performance over the
existing proof checker without increasing the size of trusted
base. And it is also an interesting engineering case study in
the dependent typed programming field, because the existing
versat code is reused in a different context, and the properties
of the code are reinterpreted for the new software, vercheck.

Acknowledgements. Many thanks to my advisor Aaron
Stump for supporting this research and implementing helpful
features in the GURU compiler.

 [1] A. Van Gelder.
http://users.soe.ucsc.edu/~avg/ProofChecker/ProofChecker-
fileformat.txt.
[2] A. Van Gelder.
http://users.soe.ucsc.edu/~avg/ProofChecker/Documents/cert
-tables-sat07.pdf.
[3] H. Zhang, “Sato: An efficient propositional prover,” in
CADE (W. McCune, ed.), vol. 1249 of Lecture Notes in
Computer Science, pp. 272–275, Springer, 1997.
[4] A. Stump, M. Deters, A. Petcher, T. Schiller, and T.
Simpson, “Verified Programming in Guru,” in Programming

Languges meets Program Verification (PLPV) (T. Altenkirch
and T. Millstein, eds.), 2009.
[5] A. Stump and E. Austin, “Resource Typing in Guru,”
in Proceedings of the 4th ACM Workshop Programming
Languages meets Program Verification, PLPV 2010, Madrid,
Spain, January 19, 2010 (J.-C. Filliâtre and C. Flanagan,
eds.), pp. 27–38, ACM, 2010.
[6] D. Oe, A. Stump, C. Oliver, and K. Clancy, “versat: A
verified modern sat solver,” in VMCAI (V. Kuncak and A.
Rybalchenko, eds.), vol. 7148 of Lecture Notes in Computer
Science, pp. 363–378, Springer, 2012.
[7] A. Van Gelder, “Verifying rup proofs of propositional
unsatisfiability,” in ISAIM, 2008.
[8] E. Goldberg and Y. Novikov, “Verification of proofs of
unsatisfiability for cnf formulas,” in Proceedings of the
conference on Design, Automation and Test in Europe -
Volume 1, DATE ’03, (Washington, DC, USA), pp. 10886–,
IEEE Computer Society, 2003.
[9] T. Weber and H. Amjad, “Efficiently checking
propositional refutations in hol theorem provers,” J. Applied
Logic, vol. 7, no. 1, pp. 26–40, 2009.
[10] S. Böhme and T. Weber, “Fast lcf-style proof
reconstruction for z3,” in ITP (M. Kaufmann and L. C.
Paulson, eds.), vol. 6172 of Lecture Notes in Computer
Science, pp. 179–194, Springer, 2010.
[11] A. Darbari, B. Fischer, and J. Marques-Silva,
“Industrial-strength certified sat solving through verified sat
proof checking,” in ICTAC (A. Cavalcanti, D. Déharbe, M.-
C. Gaudel, and J. Woodcock, eds.), vol. 6255, pp. 260–274,
Springer, 2010.
[12] A. Biere, “Picosat essentials,” JSAT, vol. 4, no. 2-4,
pp. 75–97, 2008.

제37회 한국정보처리학회 춘계학술대회 논문집 제19권 1호 (2012. 4)

- 1179 -

