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ABSTRACT 

Nearfield acoustic holography method predicts an unmeasured sound field, therefore it depends on 
its prediction methods. In particular, if one has radiators or scatters, which cannot be expressed by 
simple geometry, then inverse boundary element method (BEM) is normally employed to reconstruct 
the sound field induced by sound sources with irregular profiles. The characteristics of boundary 
element, including the element shape, characteristic length, order of shape function and others, affect 
the reconstruction error. Investigating the errors by means of changing these factors will provide a 
guide line for selecting appropriate factors, associated with the elements of BEM. These factors are 
investigated by numerical simulations, and the accuracies with respect to the variant factors are 
compared. Novel suggestions for selecting appropriate boundary element factors are described based 
on the simulation results. 

 
1. Introduction  

The nearfield acoustic holography (NAH) method 
is a powerful tool for visualizing the sound field due 
to its high resolution and fine reconstruction accuracy. 
NAH method is calculated in different numerical 
ways according to the sound source profiles. The 
NAH method based on Fourier acoustic is 
computationally very efficient, but the geometries of 
the sound sources are limited to planar, cylindrical 
and spherical geometries [1-2]. The measurement 
points on the hologram surface are restricted as 
distributing with equal distance in each direction and 
the hologram must be conformal to the source surface. 
To analyze the arbitrarily shaped sources, NAH 
methods based on the boundary element method 
(BEM) [3-7] and wave superposition method [8-9] are 
appropriate. The latter two methods do not require the 
regular measurements and conformal holograms. The 
statistically optimized nearfield acoustic holography 
(SONAH) [10] reconstructs the patch sound field in a 
least mean square sense by the hypothesis that the 
sound field is the superposition of a series of 
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elemental waves. SONAH is an effective method 
without the limitation on hologram shape. 

The reconstruction accuracy is the most important 
issue in NAH procedures [2]. The reconstruction 
accuracy in BEM-based NAH is our main study 
objective in this present paper. Usually, the 
commonly accepted rule of thumb is to use six linear 
elements per wavelength for harmonic acoustics. 
Marburg [11] analyzed the effect of the characteristic 
length on the numerical accuracy for forward 
problems. The results showed that six constant or 
linear elements per wavelength are sufficient to 
obtain a solution of about error of 10~15%. The 
quadratic elements seem to provide higher efficiency 
rates than constant or linear elements.  

For BEM-based method, the ill-posed nature may 
amplify the errors in the inverse procedures [7]. 
Therefore the requirements for the numbers of 
elements per wavelength may be more restrictive. 
The other factors will also affect the reconstruction 
accuracy. Finding the relationship between the 
accuracy and the relevant factors, it will be helpful 
for setting up meshed model and measurement, and 
selecting appropriate regularization methods and 
other parameters.  

Relevant issues, including element shapes, shape 
functions, different regularization methods, element 
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characteristic length, measuring distance, and 
numerical integral methods, are readily addressed and 
investigated. Numerical simulations compare the 
performance of the triangle and quadrilateral 
elements, with three types of interpolation 
polynomials. Based on the comparison of the 
reconstruction errors, it is estimated that how many 
elements per wavelength are required to remain to 
reach a desired error. 

2. Basic theory of BEM-Based NAH 

Assuming a sound source in the free space,  and   imply the interior and the exterior volume, 
respectively,   denotes the source boundary. The 
acoustic pressure with frequency f at any field point 
can be computed by Helmholtz’s integral equation 
(HIE) as follows: (, )=  (, ) (, , )−  (, )(, , )  (1) 

where (, )means the complex pressure in the 
field with the coordinate r, (, )  and (, ) 
mean the pressure and the normal velocity on the 
surface, respectively. (, , ) is Green’s function 
in free space with wavenumber  = 2/, where f 
and c represent the frequency and the wave speed, 
respectively.   denotes the outward normal 
direction to the source surface. The coefficient C 
depends on the boundary smoothness. 

In BEM-based NAH, Helmholtz’s integral 
equations for both the exterior and surface domains 
are combined to lead to the transfer matrices between 
the acoustical variances in the hologram and on the 
surface. After applying the boundary element method, 
the integral equation can be calculated numerically, 
and the relationship between surface and exterior 
acoustical variances can be built by matrix equations 
as equations (2) and (3),   =  (2)  =  −  (3) 

Then, the transfer matrix functions, which relate 
the measured pressure and surface pressure, or 
normal velocity, can be obtained as follows：  = [ −] =  (4)  = [ −  ] =  (5) 
where   is the vector of pressure on the 
measurement positions,   and   are the vectors 
of pressure and normal velocity on the nodes in the 
surface, respectively.   and   are both transfer 
matrices. Then the surface pressure and velocity can 

be calculated in an inverse procedure.  
Problematic frequencies are encountered in the 

BEM-based NAH, which will cause non-unique 
solution. Combined Helmholtz Integral Equation 
Formulation (CHIEF) and Burton-Miller method are 
choices for conquer the problematic frequencies [12,13]. 
Here CHIEF method is adopted in simulations. 

Usually, the regularization methods should be 
employed to alleviate the ill-posed nature in the 
inverse procedures. Tikhonov regularization method 
is broadly used with different manners for selecting 
regularization parameters [6-7, 14]. Generalized Cross 
Validation (GCV) and L-curve methods are often 
hired to determine the regularization parameters. The 
iterative methods are preferable to obtain the solution 
of a matrix formula when the matrix is so large that it 
is too time consuming or too memory-demanding to 
work with the SVD. Williams [7] explained the similar 
regularization effect between Krylov subspace 
iterative method and Tikhonov method. In 
mathematics, the generalized minimal residual 
method (GMRES) is an iterative method for the 
numerical solution of a nonsymmetric system of 
linear equations [15]. The method approximates the 
solution by the vector in a Krylov subspace with 
minimal residual. Both Tikhonov regularization and 
GMRES are adopted to deal with the inverse 
procedures and their results are compared.  

3. Effect of element type and shape function 

Boundary elements can be distinguished due to 
their shape and shape function (or interpolation). 
Here they are distinguished by their shape, triangular 
and quadrilateral, or alternatively, by the order of 
interpolation, constant, linear and quadratic.  

Using the shape function, the coordinate can be 
expressed as follows,  () = ()   (6) 

where ()  (  = 1,2,3 ) are the global Cartesian 
coordinates and () = (, )  is the local 
coordinates，(  = 3,4,6,  	8 ), ()  is the shape 
function. In the same way, the pressure and velocity 
can be determined by equation 6 as long as replacing 
the   by   or  .  

In this section, the influence of the different 
element types and shape functions will be studied and 
then suggestions will be made. 

3.1. Forward calculation accuracy versus 
measurement distance 

The measurement distance will be researched 
firstly. A pulsate sphere is employed to test the 
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accuracy in forwards calculation. Figure 1 presents 
meshed models with radius of 0.5m by 384 
quadrilaterals and 768 triangles, respectively. All of 
the constant, linear and quadratic shape function will 
be adopted and compared. The number of elements 
and nodes are summarized in Table 1. The 
characteristic length h is nearly equal to 0.1m. 

 
(a)             (b) 

Figure 1. Meshed model andmeasurement points. (a) 
384 quadrilaterals, (b) 768 triangles 

Table 1. # of nodes for different shape functions 

Elements Shape function # of nodes 

Quadrilateral 
(#: 384) 

constant 384 

linear 386 

quadratic 1154 

Triangle 
(#: 768) 

constant 768 

linear 386 

quadratic 1538 

The theoretical pressure and velocity can be 
calculated by equations 7 and 8, respectively. P = Ar e  (7) 

V = Arρc 1 + ikrikr e  (8) 

where A is a constant, r is the distance from the center 
of sphere, k is wavenumber, ρ is the medium density 
and c is the sound speed.  

The pressure on the nodes in a circle, whose center 
coincides with the sphere origin, will be computed. 
The error is defined by equation 9 where the suffixes 
denote that values are computed and theoretical, 
respectively.  = |P  − P ||P | × 100 (9) 

Measurement distance and characteristic length are 
considered together. Firstly, the measurement 
distance varies from 0.01m to 0.10m with a fixed 
frequency f=510Hz. The results are shown in Figure 
2 (a). The constant element shows the worst accuracy, 
linear performs better and quadratic does the best. 
The error decreases by the increment of measurement 
distance. Then the measurement distance is fixed to 

0.06m for testing the effect of characteristic length by 
changing the frequency. Reults in Figure 2(b) show 
that the higher frequency leads to relatively worse 
accuracy. It can be found that the measurement 
distance is the primary factor. The errors are similar 
between models meshed by triangle and quadrilateral 
elements with same interpolation, except for the case 
of constant element with d/h=0.1. It is easy to 
understand that the double integral points lead to a 
better accuracy certainly when using constant triangle 
elements.  

 

 
Figure 2: (a) Evolution of the error versus measuring 
distance for fixed frequency 510Hz; (b) Evolution of the 
error versus characteristic length for fixed measuring 
distance 0.06m 

For the measurement distance, the errors decrease 
gradually for constant element until to d/ℎ=0.5, while 
for linear and quadratic elements until d/ℎ=0.2. For a 
fixed frequency f = 510Hz, the error approaches to 3% 
for constant element while d/ℎ>0.5, and 2.5% for 
linear element while d/ℎ>0.2, and error less than 2% 
for quadratic element while d/ℎ>0.2. Selecting a 
fixed distance d=0.06m and changing the frequencies, 
the error increases for constant and linear elements 
and it keeps in a small value for quadratic one. When 
d/ℎ>0.2 and h<λ/4, the forward calculating error is 
less than 5% for constant elements and 4% for linear 
elements, and it keeps under 0.5% for quadratic 
elements.  

According to the result above, it prefers to adopt 
the linear element rather than the constant one, 
because the higher accuracy requires more 
evanescent waves existing in near distance. Another 
reason is that the double nodes in the constant 

(b) 

(a) 
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triangle element model results in large number of 
measurement points. It reduplicates the working time 
in practical cases. Therefore, we recommend the 
characteristic length h to be less than λ /4 and 
measurement distance larger than h/5 in the linear 
element models for keeping the forward calculating 
error under 4%.  

Although the quadrilateral element shows the best 
accuracy, near to 0.1%, it must face the discontinuity 
feature which leads to large reconstruction error. It is 
explained in the following section. 

3.2. Discontinuity of quadratic element 

 
(a)            (b)            (c) 

Figure 3. (a) Sound source and meshed model with 
differrent interpolation, (b) linear and (c) quadratic 
quadrilateral elements. 

A spherical model whose pressure and velocity is 
excited by two monopole sources is used as the sound 
source (in Fig. 3). The monopole sources are located 
at (0, 0.3, 0) and (0.3, 0, 0) with unit of meter, the 
pressure and velocity excited by a monopole source 
are calculated by equation 5 and 6 with A=1. The 
sphere is with radius 0.4m and meshed by 384 linear 
and quadratic quadrilateral elements, respectively. 
1736 measurement points are distributed on a 
homocentric sphere with radius 0.43m. The 
frequency is chosen as 100Hz. The reconstructed 
pressure and velocity on a generatrix in the spherical 
source surface are used to calculate the errors. They 
are 5% for pressure and 14% for velocity by the 
linear elements, and the mean square errors are quite 
large, more than 25%, for both pressure and velocity 
by the quadratic elements. The large error is caused 
by the discontinuity of the quadratic elements.  

Williams [7] pointed out that the increasing the 
resolution by employing the quadratic elements will 
pay the penalty of reducing the smoothness of the 
solution. In the procedure of computing  ,  ,  and  in equations 2 and 3, the entries of the 
matrix will be close to 0 which are related to the 
vertex points of quadratic elements. This unbalance 
transfers to   and  . The details will not be 
expanded here. Only a simulation is present to 
explain this discontinuity.  

Supposing the singular value decomposition of 
transfer matrix []  in equation 4 is as follows, [] = [][] []  (10) 
where both [] and [] are unitary matrices, [] 

is a diagonal matrix with values σ ≥ ⋯ ≥ σ∗ ≥ 0, 
and N∗ = rank([]). The superscripts H represents 
Hermitian operator.  = [][][][] (11) 
where [] is the regularization matrix for alleviate 
the ill-posed nature. Each column of the [] 
represents an approximation to the acoustic field by 
basic acoustic waves or mode shapes [7]. The similar 
performance is for . 

The plots of mode shapes in Figure 4 show the 
discontinuity for the quadratic elements, while the 
mode shapes perform smooth for linear elements. 
Therefore, the quadratic elements should be avoided 
in BEM-based NAH method.  

 

 
Figure 4. Columns v1 ,...,v18 of [V], which is obtained 
from the SVD of [Tv], f=100 Hz. (a) by linear and (b) 
quadratic quadrilateral elements.  

4. Numerical Experiment 

4.1. Sound source model and meshes 

The same sound source will be utilized to study the 
effect of some factors on the reconstruction. The 
sphere with radius of 0.4m is discretized into 384 
quadrilaterals and 768 triangles, and 386 nodes for 
each. The characteristic length of the element is 
0.08m. The frequency varies from 100Hz to 2000Hz. 
The measurement distance is selected as 0.03m for 
ensuring the forwards calculation accuracy. There are 
488 measurement points distributed evenly on the 
conformal sphere. Three kinds of regularization 
methods are adopted simultaneously. 

4.2. Errors by characteristic length 

Because the reasons explained in section 3, only 
linear elements are selected to set up the model. Their 
reconstruction errors versus the ratio of characteristic 
length on wavelength, h/λ, are plotted in Figure 5.  

There is not obvious difference between the errors 
of both pressure and velocity when using triangle or 
quadrilateral elements. It means each of them can be 
employed as per researcher’s favor. 

(a) 

(b) 
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The pressure error increases monotonously along 
with the increment of h/ λ . The velocity error 
decreases firstly when h/λ is in the segment from 
0.01 to 1/6 or 1/5, then increases after h/λ exceeds 
this segment. When h/λ belongs to the segment of 
[1/10, 1/4], the velocity error is less than 11%. When 
h is larger than λ/3, both pressure and velocity errors 
are beyond 16%. Considering to keep both the 
pressure and velocity errors under an acceptable level 
as 10%, it is better to set the characteristic length 
among from 1/10 to 1/4 wavelength.  

The different regularization methods also affect the 
reconstruction errors. As a whole, Tikhonov 
regularization with GCV or L-curve methods and 
GMRES lead to similar reconstruction errors, except 
for velocity errors by triangle elements with small h/. 
Tikhonov method with regularization parameter 
choosing method of L-curve performs slight better 
than GMRES while h/  belongs to [1/10, 1/3]. 
Tikhonov method with regularization parameter 
choosing method of GCV performs relatively worse 
for reconstructing velocity by triangle elements. 
Especially, when h/ is in the segment of [1/10, 1/4], 
there’s not obvious difference between errors by 
GMRES and Tikhonov methods. Therefore, GMRES 
or Tikhonov method can be chosen freely as per 
researcher’s favor. If Tikhonov method is chosen, it’s 
better to select L-curve method for determining the 
regularization parameter. 

Numerical integral is also a factor for 
reconstruction accuracy. The Gauss and Hammer 
numerical integral methods are adopted for 
quadrilateral and triangle elements, respectively. 
Usually, more integral points inside the standard 
element will lead to high resolution [16,17]. For 
example, using 3 × 3 Gauss integral points can get 
the accurate value for 5-order polynomial functions, 
as well as 4 × 4 for 7-order and 5 × 5 for 9-order 
polynomial functions. But the higher resolution 
should pay the cost of larger computing time. A test is 
done to compare the accuracies for different Gauss 
integral points. The result shown in Figure 6 indicates 
that only velocity error is reduced slightly for h<λ/5 
when the number of Gauss integral points is 
increased to 25. Hence using 3 × 3 Gauss integral 
points is efficient for computing as well as keeping 
enough resolutions. Correspondingly, to select 7 
Hammer integral points is wise for triangle element 
which is accurate for 5 order polynomial functions. 

5. Discussion 

The commonly accepted rule of thumb, 6 elements 
per wavelength, can be extended to a segment that is 

from 4 to 10 elements per wavelength. In this 
segment, the velocity error will keep in almost 
unchangeable level.   

 

 
Figure 5. the plots of the reconstruction (a) pressure and 
(b) velocity accuracy versus h/λ by different element 
shapes and regularization methods 

 

 
Figure 6. The plots of the reconstruction accuracy 
versus h/λ under the different number (9, 16 and 25) of 
gauss integral points, (a) pressure and (b) velocity  

According to the analysis for selecting appropriate 
factors for BEM-based NAH, some items must be 
discussed firstly. When analyzing the sound field, the 

(b) 

(a) 

(a) 

(b) 
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first step is determine the frequency of concern. The 
second step is to compare the longest and smallest 
wavelength for cases with a broad band of 
frequencies, then determine the characteristic length 
of the element. If the characteristic length of a 
meshed model cannot satisfy the all frequencies 
under the rule of λ/10<h<λ/4, for example the 
expected accuracy is less than 10%, then the model 
should re-meshed to satisfy the rest frequencies. That 
means the characteristic length cannot be determined 
only by the smallest wavelength.  

6. Conclusions 

The investigated factors include the element type 
and shape function, measurement distance, 
characteristic length of element, regularization, and 
resolution of numerical integral. Their influence on 
the reconstruction error in BEM-based NAH is 
studied by numerical simulations. The guide line for 
determining these factors is summarized seriatim in 
follows. 

Because of the lower resolution of constant 
element and discontinuity of quadratic element, linear 
element is suggested for BEM-based NAH. Both 
triangle and quadrilateral elements can be hired for a 
designed error level, who perform the similar 
accuracies.  

The measurement distance should be larger than 
1/5 of the element characteristic length. To keep the 
errors of pressure and velocity both fewer than 10%, 
the meshed model should be limited in from 4 to 10 
elements per wavelength. GMRES and Tikhonov 
method jointly with L-curve method are both 
suggested for regularization. Numerical integral 
solution is enough if it’s accurate for 5 orders 
polynomial functions, so that 3 × 3 Gauss integral 
points for quadrilaterals and 7 Hammer integral 
points for triangles are advised.   
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