수정미세저울을 통한 폭발물 특이적 펩타이드의 결합친화도 분석

Binding Affinity Analysis of Explosives Specific peptides using Quartz Crystal Microbalance

백형택*,유연규**,임시형*

Si-Hyung Lim, Hyung-Taek Baek and Yeonkyu Yu

1. 서 론

Quartz는 고유의 압전 특성을 갖는 소자로 이를 응용한 장치들이 현재까지 산업 전반에 걸쳐 이용되고 있다. 특히 Quartz Crystal Microbalance(이하QCM)는 분자단위의 미소 질량을 고유 진동수의 변화를 통해 계측할 수 있는 장치로서 바이오-케미컬센서 분야에서도 많은 연구가 진행되어지고 있다. 본 연구에서는 폭발물의 일종인 dinitrotoluene(이하DNT)을 감지하기 위한 수용체로서 기존에 발표된 펩타이드 서열(DNTs-BP; HPNFSKYILHQR-C)과본 연구에서 표면에 고정된 유도체에 Phage display기법으로 스크리닝하여 개발된 DNT 특이적 펩타이드 서열(DNTi-BP;KMHTASLSQPLM-GC)의 DNT 결합력을 분자 탈착에 의한 공진 주파수의 변화를통해 비교 분석하였다.

2. 본 론

2.1 측정 원리

QCM Chip은 331 µm 의 두께를 갖는 Quartz 와 상하부에 Cr/Au 박막으로 증착된 전국으로 이루어 져 있다. Sauerbrey Equation 은 Quartz 표면에 물 질 흡착에 따른 질량 변화의 계측 원리를 나타내고 있다.

$$\Delta f = -\frac{2nf_o^2}{\sqrt{\rho_q \mu_q}} \Delta m$$

† 교신저자;임시형, 국민대학교 기계시스템공학부

E-mail: shlim@kookmin.ac.kr Tel: (02) 910 - 4672

* 국민대학교 대학원 기계설계학과 ** 국민대학교 생명나노화학과 ρ = density of quartz

 μ = shear modulus of quartz

 \mathbf{n} = number of harmonic

QCM은 나노그램 수준의 질량 변화를 공진 주파수의 변화를 통해 알 수 있기 때문에 칩 위에 코팅된 펩타이드와 결합되어있는 DNT 분자가 UV에 의한 탈착으로 인해 감소되는 질량을 측정하였다.

2.2 실험 절차

냉동 상태에서 보관된 DNT 특이적 펩타이드 분말을 PBS buffer에 녹여서 제조한 0.1 mM 용액에 UV cleaning 된 Quartz chip을 약 24시간동안 담그어 코팅하였다. DNT 감지물질의 cross-linker로 펩타이드 서열의 마지막에 cystine을 추가하여 Au 전국 표면에서 disulfide 결합을 유도하였다. Fig. 1과같이 펩타이드가 코팅된 한 쌍의 Quartz chip 중 1개는 타겟 물질인 2,4-dinitrotoluen (DNT) 분자를 결합시킨 후 UV lamp ($\lambda = 254$ nm, intensity = 135 mW/Cm²)를 이용하여 자외선을 Quartz 위에 노광시키고 2 set의 QCM에서 동시에 신호를 측정하였다. 위의 방법으로 두 종류의 펩타이드에 대해동일한 실험을 진행하였다.

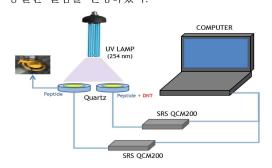


Fig. 1. Schemetic of DNT desorption sensing platform using UV

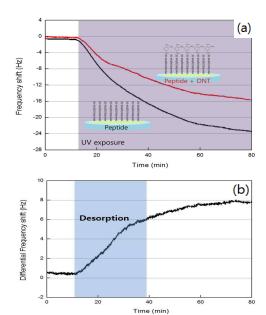
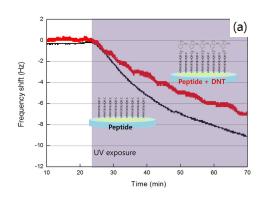



Fig. 2. (a) Frequency shift (Δf) of peptide coated chip and DNT adsorbed chip (DNTi-BP) (b) differential frequency change between two chips

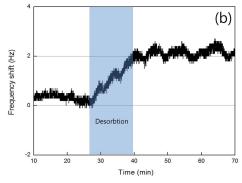


Fig. 3. (a) Frequency shift (Δf) of peptide coated chip and DNT adsorbed chip (DNTs-BP) (b) differential frequency change between two chips

2.3 실험 결과 및 고찰

본 연구에서 개발된 펩타이드인 DNTi-BP는 UV 조사를 시작한 후 lamp에 의한 온도 상승으로 인해 QCM 주파수 신호가 감소하는 것을 볼 수 있다. 이 때 두 Quartz chip간의 신호차가 발생하는 것을 볼 수 있다. DNT 분자가 흡착되어있는 칩에서는 UV에 의해 DNT 분자와 펩타이드간의 결합이 끊어 지며 Quartz chip의 질량변화에 의해 신호가 5~6 Hz 정도 상승하며 펩타이드만 코팅되어있는 칩과의 신호차가 발생하였다. Fig. 2 와 같이 두 칩의 신호 차이를 비교해 보면 약 20분 이상 증가하며 이후에 는 큰 변화 없이 유지된다. 이를 통해 UV 조사 후 약 20분 이상 DNT 분자의 탈착이 이루어짐을 알 수 있다. 반면 DNTs-BP의 경우에는 DNT 분자 탈 착에 의해 약 2 Hz 정도의 신호 차이를 보이며 12~13분 가량 DNT 탈착이 이루어지는 것을 관찰 할 수 있었다. 실험 결과에서 보이는 주파수 변화폭 은 탈착된 DNT 분자의 질량으로 펩타이드의 DNT 수용량을 의미할 수 있다. 본 연구에서 개발된 펩타 이드 DNTi-BP가 기존에 발표된 DNTs-BP보다 3 배 가량의 주파수 변화폭을 보이며 탈착 시간 또한 약 1.5배 길다는 점으로 미루어, 수용체로서 더 우 수한 성능을 가질 수 있음을 예상할 수 있다.

3. 결 론

이 실험에서는 기존에 발표된 DNT 특이적 펩타이드 서열과 본 연구에서 표면에 고정된 DNT 유도체를 이용한 Phase display 기법으로 개발된 펩타이드의 결합력을 비교 분석하는 데에 목적을 두었다. 실험 결과를 바탕으로 기존의 펩타이드인 DNTs-BP보다 본 연구에서 개발된 펩타이드 DNTi-BP가 상대적으로 보다 많은 DNT 분자를 수용하며 보다 강한 결합력을 갖는 것을 예측할 수 있다.

후 기

본 연구은 지식경제부 민군겸용기술개발사업 및 2012년도 정부(교육과학기술부)의 재원으로 한국연구재단-신기술융합형 성장동력사업(No.20120053)의 지원을 받아 수행된 연구임.