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1. Introduction

 

This paper present a numerical analysis, called 

the waveguide finite element method, is applied 

to predict vibration of railway tracks. The 

waveguide FE (WFE) approach is used to 

calculate the vibration of an infinite, continuously 

supported rail excited by appoint force. The WFE 

method models just a 2 dimensional cross-

section of the rail to simulate wave propagation 

along the rail. In this presentation, a brief 

description for the WFE equation will be given 

and it will be applied to predict dispersion 

relation, decay rate and point mobility of the 

waves in railway tracks.   

2. Waveguide finite element method 

Suppose that there is an elastic waveguide 

structure which is infinitely long in one direction, 

call it the x-direction, and its cross-section 

normal to the x-axis is uniform along x. Time 

harmonic displacements, (u,v,w), of the element 

in three directions of (x,y,z) can be expressed 

with separable variables as   
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where t denotes time, y and z denote 

coordinates of the cross-section,  ,   and   

define the displacements of the cross-section 

and   is wavenumber along the x direction. 

By using these wave solutions for the x 
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direction in the finite element formulation, a 

two-dimensional finite element equation is made 

over a cross-sectional model, instead of a 

three-dimensional full FE model. The 

differential equation for a cross-sectional model 

is given by 
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where   ,    and    are stiffness matrices,   

is the mass matrix of the cross-section and 

       is the displacement vector.  

Since                    as described in 

Eq.(1) the differential equation in Eq.(2) can be 

simplified to an eigenvalue problem, 

 

                                   (3) 

 

where    contains the displacements of the 

cross-section which define the deformation 

shapes of waves. Here   and   are unknown 

variables to be identified. 

3. Rail models 

The first rail profile used here is a standard CEN 

40E1 section, which is shown in Fig. 1(a). Note 

that the pad thickness is exaggerated compared 

with a real pad. This is done to clarify figures 

showing displacements of the rail. However, to 

avoid non-physical standing waves within the 

pad a very low density is used. The second rail is 

a standard CEN 51Ri profile used for trams and 

the embedding is made to fill the space around 

this profile as shown in Fig. 1(b). For this rail, 

two different embedding materials are used; a 

softer ‘pad’(yellow) and a stiffer ‘fill’ material 

around the rail (red). 
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(a)           (b) 

Fig. 1. Model mesh of rails. (a) Open rail, CEN 40E1, 

(b) embedded rail, CEN 51Ri. 

4. Results  

Fig. 2 illustrates the dispersion relations of the 

waves propagating along the tracks. The 

different waves are distinguished with marks in 

Fig. 2. In addition, Fig. 3(a) shows the point 

mobility of the open rail for the two force 

positions indicated in Fig. 1(a). The main peak, 

around 240 Hz, is due to the resonance of the rail 

mass on the stiffness of the rail pad. For the 

 

 

 
Fig. 2. Dispersion relations of the waves in (a) the 

open rail, CEN40E1, (b) the embedded rail, 

CEN51Ri.  

 
Fig. 3. Point mobilities of (a) the open rail (solid: 

centre excitation; dash line: edge excitation), CEN 

40E1, (b) the embedded rail, CEN 51Ri (solid line: 

normal mass embedding; dashed line: reduced mass 

embedding; dash-dot line: open rail). 

 

forcing point away from the centre of the rail, the 

response is higher. The point mobilities of the 

embedded rail are shown in Fig. 3(b). Since the 

curves for two different ‘filling’ materials are 

similar, waves propagating primarily in the 

embedding material have only limited effect on 

the mobility of the rail. 

5. Conclusion  

The WFE method to calculate the rail vibrations 

is described in this study. Two different railway 

tracks were considered as application examples; 

open rail and embedded rail. Dispersion relations 

and decay rates of the waves propagating along 

the railway tracks were easily identified in this 

method. In terms of the mobility, the railway 

tracks chosen have the similar behavior for the 

vertical excitation. The radiation from the tracks 

also can be predicted adding boundary elements 

on the surface of the rail, which will be discussed 

in the second presentation of the work.  
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