# 하이브리드 마운트 시스템의 제어 성능 특성에 대한 연구

Study on Performance Characteristics of Control Algorithm Applied to Active Hybrid Mount System

신윤호† · 조혜영\* · 문석준\* · 정우진\*\* Yun-Ho Shin, Hye-Young Jo, Seok-Jun Moon and Woo-Jin Jung

## 1. 서 론

본 연구에서는 구조기인 소음을 발생시키는 함정 탑재 장비의 진동 저감을 목표로 능동형 하이브리 드 마운트용 전자기식 작동기의 적용 제어기에 따 른 성능 특성에 대해 고찰한다. 전 계를 포함하는 전자기식 작동기 시스템의 수학적 모형을 유도하고, 되먹임 제어(PD Control) 및 Filtered-X LMS 제어 기의 적용 결과를 고찰한다.

### 2. 마운트 시스템의 모사실험

#### 2.1 마운트 시스템의 수학적 모형화

(1) 하이브리드 마운트의 구성

능동형 하이브리드 마운트는 점탄성 재료로 제작 되는 수동 요소와 관심 주파수 구간에 대한 능동 제어 이론 적용을 위한 전자기식 작동기의 결합 형 태로 구성된다. 배치형식에 따른 하이브리드 마운트 의 동특성에 대한 비교 연구 결과를 바탕으로, 지반 으로 전달되는 전달력 감소를 위하여 비-접촉식 병 렬형 마운트를 하이브리드 마운트의 배치 형식으로 선정하였다, Fig. 1.



Fig. 1 Schematic Diagram of Non-contact<br/>Type Hybrid Mount System(2) 마운트 시스템의 수학적 모형화<br/>Fig. 2에는 본 연구에서 관심을 가지는 마운트 시스템에 대한 개략도를 입력힘을 포함하여 나타내었

```
    * 교신저자; 한국기계연구원 시스템다이나믹스연구실
E-mail : shinyh77@kimm.re.kr
Tel : 042-868-7211, Fax : 042-868-7418
    * 한국기계연구원 시스템다이나믹스연구실
    ** 국방과학연구소
```

으며, 식(1)과 (2)는 이에 대한 수학적 모형을 유도 한 결과를 나타내었다. 도입된 작동기의 배치 특성 상, 선체로 전달되는 힘을 줄이기 위해 적용된 힘의 반작용력이 상부 기진원으로 전달된다. 이에 대한 영향은 제어기 적용 결과를 통해 관찰한다.





$$X = \begin{bmatrix} x_p & \dot{x}_p & x_b & \dot{x}_b \end{bmatrix}^T$$
  

$$F = \begin{bmatrix} F_o & F_a \end{bmatrix}^T$$
(1)

 $\langle \alpha \rangle$ 

$$\dot{X} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -k_r/M_p & -c_r/M_p & k_r/M_p & c_r/M_p \\ 0 & 0 & 1 \\ k_r/m_b & c_r/m_b & \frac{-(k_r+k_b)}{m_b} & \frac{-(c_r+c_b)}{m_b} \end{bmatrix} X + \begin{bmatrix} 0 & 0 \\ 1/M_p & 1/M_p \\ 0 & 0 \\ 0 & -1/m_b \end{bmatrix} F$$

$$(3) \ \Delta T A = \ \Sigma \ \text{etrive} \ r \ \text{etrive} \ S = \ \Lambda \ \text{etrive} \ \Lambda \ \text{etrive} \ \text{etrive} \ \text{etrive} \ \Lambda \ \text{etrive} \ \text{e$$

형화

전자기식 작동기의 동적 거동 특성이 제어에 미 치는 영향을 고찰하기 위하여 해석을 통해 추출한 관련 매개변수들과 Fig. 3에 나타낸 작동기의 전기 적 특성을 이용하여 식(3)과 (4)와 같이 전 계를 포 함한 마운트 시스템의 수학적 모형을 유도하였다. 이는 가진원의 거동으로 인한 역기전력이 계에 미 치는 영향을 포함한다.



Fig. 3 Electric Curcuit of Electro-magnetic Actuator  $X = \begin{bmatrix} x_p & \dot{x}_p & x_b & \dot{x}_b & i \end{bmatrix}^T$  $F = \begin{bmatrix} F_a & V \end{bmatrix}^T$ (3)



#### 2.2 제어기를 포함한 모사실험 결과

가진원에 대한 실측 결과를 바탕으로 모사실험을 위하여 식(5)와 같이 결정된 입력힘(F\_)를 이용하여 수행한 모사실험 결과는 다음과 같다.

> $F_0 = 300 \times \sin(2\pi (f_0 + 1/6)) + \text{Random Noise [N]}$ (5) $f_0 = 26.67 Hz (1600 rpm)$

(1) 수동 시스템 모사실험 결과

전기적 특성을 포함한 수동 계에 대한 모사실험 결과는 Fig. 4와 같으며, 기진원의 거동으로 인한 역기전력으로 인하여 계에 일정 힘이 인가됨을 확 인할 수 있다.



(c) V and i (d) Actuation Force Fig. 4 Passive System Simulation Results (2) 되먹임(PD) 제어기 적용 결과

되먹임(PD) 제어기 적용 결과, 전기적 특성 포함 유무에 따른 과도 구간에서의 거동 특성 차이는 관 찰되나, 안정 구간 변화를 제외한 제어 성능에 미치 는 영향은 크지 않으며, 상부 기진원에 대한 역기전 력의 영향이 크지 않음을 Fig. 5~6을 통해 관찰할 수 있다.



Fig. 5 Active System Simulation Results w/o Electric Characteristics of Actuator (PD)



Fig. 6 Active System Simulation Results w/ Electric Characteristics of Actuator (PD) (3) Filtered-X LMS 제어기 적용 결과

Filtered-X LMS 제어기 적용 결과, 되먹임 제어 기와 유사하게 전기적 특성 포함 유무에 따른 과도 구간에서의 거동 특성 차이는 관찰되나, 안정 구간 변화를 제외한 제어 성능에 미치는 영향은 크지 않 으며, 상부 기진원에 대한 역기전력의 영향이 크지 않음을 Fig. 7~8을 통해 관찰할 수 있다.



(a) X<sub>p</sub> and X<sub>b</sub>

(b) PSD

Fig. 7 Active System Simulation Results w/o Electric Characteristics of Actuator (FxLMS)



(c) V and i (d) Actuation Force Fig. 8 Active System Simulation Results w/ Electric Characteristics of Actuator (FxLMS)

## 3. 결 론

본 연구에서는 능동형 하이브리드 마운트의 전자 기식 작동기에 적용 가능한 제어기를 포함하여 모 사실험을 수행하였다. 일반적인 되먹임 제어기와 협 대역 주파수 구간 제어에 용이한 Filtered-X LMS 제어기에 대해 검토하였으며, 두 제어기에 대한 적 용 가능성 및 계에 미치는 영향을 논의하였다.

후 기

본 연구는 국방과학연구소의 연구지원으로 수행되었습니다.