선박 디젤 엔진용 SCR 시스템에서 혼합기 형상에 따른 유동혼합 특성에 대한 수치해석적 연구

김태경 1 · 성연모 1 · 하상준 2 · 한승한 3 · 최경민 1 · 김덕줄 4

Numerical Study on Flow Mixing Characteristics with Mixer Type in SCR system for Marine Diesel Engine

Tae-kyung Kim¹·Yonmo Sung¹·Sang-jun Ha²·Seung-han Han³·Gyung-min Choi⁺·Duck-jool Kim⁴

SCR 시스템에서 유동혼합 특성을 개선하기 위해 두 가지 형태의 혼합기를 선정하였다. 난류특성 분석을 위해 비정 상상태로 해석을 진행하여 RMS velocity, Turbulence Intensity, vorticity, Concentration Uniformity 분포를 확인하였다.

1. 서론

SCR 시스템에서 분사된 Urea 수용액이 촉매부 중심부에 집중되어 촉매부의 수명을 단축시키게 되며, 또한, 암모니아의 균일하지 못한 혼합은 암모니아 슬립과 같은 Urea의 불필요한 낭비를 일으키게 된다¹¹¹. 따라서본 연구에서는 혼합기의 차이에 따른 유동 특성과 분사된 Urea 수용액의 혼합특성에 대한 영향을 수치 해석적으로 비교 분석하였다. 해석에 사용된 형상은 체적 1㎡의 촉매층을 사용한 SCR system이다. 격자 형성을 위해 사용된 프로그램은 상용 툴인 Gambit 2.3을 사용하였고 격자수는 약 65만개로 구성되어 있다. 혼합기에 의해 발생한 난류의 특성과 혼합특성을 알아보기 위해 유한체적법에 근거한 상용 프로그램인 FLUENT 6.3을 사용하였다.

2. 해석 방법 및 조건

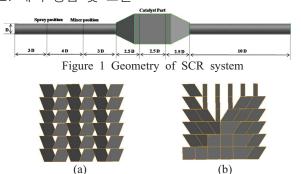


Figure 2 Shape of the mixer; (a) Up-down type mixer, (b) Swirl type mixer

Figure 1은 해석에 사용된 형상과 치수들을 나타내고 있다. 그리고 혼합기는 Figure 2와 같이 2가지 형태를 사용했으며 각 날개는 주 유동 방향에서 45°로 설치

되어 있고, 유도 방향에 따라 상하유도형과 스월방향유 도형 형태의 혼합기를 사용하였다. 날개 개수는 동일하 게 36개를 사용하였으며 혼합기를 통과 하는 면적이 같 도록 배치하였다. Figure 3 에는 분사된 수용액의 농도 분포도^[2]를 나타내고 있다.

3. 결과 및 고찰

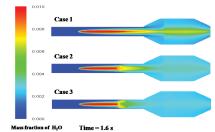


Figure 3 Contours of Concentration Uniformity Index

상하유도형 혼합기 후류에서 발생하는 작은 스케일의 와의 생성과 빠른 소멸에 의해 분사된 액적은 짧은 거리 에서 빠르게 혼합되고 높은 농도 균일도를 보인다. 반 면 스월형의 경우 벌크 스케일의 와의 유동형상에 의해 혼합거리는 증가함을 보인다.

참고문헌

- [1] 임주형,윤여빈,송춘섭,박영준,이성욱,조영석,주재근,김현옥, "Urea-SCR 시스템에서 Urea 분사방법 및 믹서장착에따른 환원제 분포특성에 관한 해석적 연구",KSAE 부문중합 학술대회, pp2-1182, 2010
- [2] Weltens H, Bressler, H, Terres F, Neumaier H, and Rammoser D, "Optimization of Catalytic Converter Gas Flow Distribution By CFD Distribution, SAE Paper 930780, pp. 131~151, 1993
- + 최경민(부산대학교 기계공학부 교수),E-mail:choigm@pusan.ac.kr, Tel: 051)510-2476
- 1 부산대학교 대학원
- 2 (주)동신
- 3 HYUNDAI BNG Steel
- 4 부산대학교 기계기술연구원