추진성능을 갖는 부유식 해양생산저장하역설비(FPSO)의 전력계통분석 이충열··양규현··윤두오²·권용락³

Study of Power system of Floating Production Storage and Offloading(FPSO) intended to voyage with thrusters between fields

Choong-Yeol Lee+ · Kyu-Hyeon Yang¹ · Doo-O Yoon² · Yong-Rag Kwon³

1.서론

해양 구조물의 한 종류인 부유식 생산 저장 하역 설비 (FPSO, Floating Production Storage and Offloading)는 최근 에너지 수요 상승과 고유가 지속에 따라 수요가 증가하 는 Marginal Field 재개발에 있어 가장 적합한 형태의 설비이 다. [1]

보통의 FPSO는 한번 Field에 투입이 되면 오랜 기간동안 이 동을 하지 않기 때문에 고정식으로 건조되지만, 매장량이 많지 않은 Marginal Field 용 FPSO는 생산을 마친 후 다른 Field 로 이동하는 주기가 짧기 때문에 초기 설계 시 자체 추진 성 능을 고려하는 경우가 늘고 있다.

본 논문에서는 추진 성능을 갖는 FPSO 초기 설계 시 필수적 으로 고려해야 하는 전력 계통(Power System)에 대해 논의한 다. 추진을 위한 Thruster가 추가되었을 시 FPSO의 효율적인 전력 운영 조건 및 구성을 제안하고, 전력 계통 해석 프로그 램인 ETAP을 통해 그 타당성을 검증한다. 전력 계통의 검증기 준은 Harsh Environment 중 North Sea에 설치되는 해양설비에 적용되는 전기 설비 표준인 NORSOK E-001로 정하였다.

2.본론

2.1 추진성능을 갖는 FPSO

본 논문에서 다룰 FPSO의 기본 사양은 표1과 같다.

No	Issue	Description		
1	Туре	Ship-Shaped FPSO (Oil)		
2	Dimension	270m (L) x 46m (B) x 26m (D)		
3	Turret	Internal Turret Mooring		
4	Oil Storage	900,000 bbls		
5	Generator	Main: 18MW x 3 set (Gas Turbine) Essential: 2.25MW x 2 set (Diesel) Emergency: 1.5MW x 1 set (Diesel)		
6	Thruster	4.5MW x 2 set (Azimuth Type)		
7	Speed	10 knot		

표 1. 추진성능을 갖는 FPSO의 전력계통 제원

FPSO의 자항 속도는 10 knot로 Wet Towing 속도의 약 2배로 설정하였다. 이는 추진 기능을 보유한 FPSO (Terra Nova, Sea Rose 등)의 성능과 유사하다. Thruster는 Azimuth Type으로

결정하였다. 이는 Harsh Environment에 투입되는 FPSO의 경 우, Positioning 및 Heading 제어 등의 성능을 위해 Azimuth Thruster를 적용하는 것이 효율적이기 때문이다. [5]. Thruster의 용량은 FPSO의 선형을 고려한 Speed-Power Curve 를 통하여 도출하였다. 그리고 FPSO의 전체 운전 조건을 고려 한 ELA를 통하여 발전기 용량 및 전력계통을 선정하였다.

2.2 추진성능을 갖는 FPSO 운전 조건

운전 조건 및 발전기 운용은 표2와 같이 설정하였다.

No	운전조건	발전	비고	
1	Production	Main	Highest	
	FIOUUCTION	Generator 2 set	Ambient Temp.	
2	Production	Main	Heading	
	+ Offloading	Generator 2 set	Control	
3	Sea Going	Main	10 Knot Speed	
		Generator 1 set	10 MIOL Speed	
4	Essential	Essential	1 GTG restart.	
		Generator 2 set	Essential Load	
5	Emergency	Emergency Generator 1 set	Safety Load	

표 2. 추진성능을 갖는 FPSO의 운전조건과 발전기 운용

운전조건 1은 석유 생산을 하는 상황이다. 연중 가장 기온 이 높은 때에도 운전이 가능해야 하기에 이를 설계 기준으로 선정하였다. Gas Turbine 발전기 성능 감소와 HVAC 최대 가 동을 고려하였다. 운전조건 2는 생산을 하면서 Shuttle Tanker에 석유를 하역하는 상황이다. 하역 시에는 Heading Control을 해야 한다. Thruster 부하를 2x50% 혹은 1x100% (1대 Fail시) 상황으로 고려하였다. 운전조건 3은 FPSO가 자 항을 하는 상황이다.Thruster 부하는 2x100% 이다. 이 조건 에서는 Ship으로서의 기능도 하기 때문에 IMO SOLAS 조약이 적용되어 1대의 Reserve 발전기가 필요하다. 전력 발전은 주 발전기 1대를 이용하는 것이 합리적이다. 운전조건 4는 주 발 전기가 모두 Fail 되었을 상황이다. 주 발전기를 다시 운전시 키기 위한 부하를 포함한 필수 부하가 고려된다. 운전조건 5 은 비상상황이다. 인명과 관련된 Safety부하가 고려된다.

본 논문에서는 최대 전력을 요구하는 운전 조건 2와 특징적 인 상황인 운전조건 3의 전력 계통을 분석한다.

<1> 이충열(삼성중공업), E-mail: choongyeol.lee@samsung.com, Tel: 02)3458-7609

¹ 양규현(삼성중공업)

² 윤두오(삼성중공업)

³ 권용락(삼성중공업)

2.3 추진성능을 갖는 FPSO의 전력조류 분석

ETAP Modeling분석을 통해 얻어진 운전조건2와 운전조건3의 전력 조류 (Load Flow) 해석 결과는 표3, 표4와 같다.

전압변동률은 최대 4.69%로 NORSOK E-001에서 인용하는 IEC 61892-1에 명시된 기준인 전압변동률 6%를 만족한다.

Voltage (% Mag)	MW	Mvar	Amp	% PF
	7.75	3.25	441.12	92.2%
100.00	1.10			
100.00	6.41	2.71	365.08	92.1%
100.00				
00.07	4.88	1.91	275.07	93.1%
99.97				
00.07	0.43	0.26	26.52	85.7%
99.97				
101 07	1.07	0.64	1020.98	85.8%
101.97				
101.97 1.07	1 07	0.04	1000 00	05.00
	0.64	1020.98	85.8%	
101 07	7 0.51	0.30	485.09	85.8%
101.97				
101 07	0.51	0.30	485.09	85.8%
101.97				
104.69	4.51	1.68	3738.67	93.7%

표 3. 운전조건2의 전력조류

Panel	Voltage (% Mag)	MW	Mvar	Amp	% PF
80-EH-001A 11kV Top. SWBD	100.00	0.00	0.00	0.00	0.0%
80-EH-001B 11kV Top. SWBD	100.00	0.00	0.00	0.00	0.0%
80-EH-002A 11kV Hull SWBD	99.98	0.00	0.00	0.00	0.0%
80-EH-002B 11kV Hull SWBD	99.98	0.00	0.00	0.00	0.0%
82-EN-003A 690V Hull SWBD	102.85	0.64	0.38	604.28	85.8%
82-EN-003B 690V Hull SWBD	102.85	0.64	0.38	604.28	85.8%
84-EN-003A 690V Emcy SWBD	102.85	0.37	0.22	347.41	85.7%
84-EN-003B 690V Emcy SWBD	102.85	0.37	0.22	347.41	85.7%
Bus 24 VFD SWBD	104.69	4.51	1.68	3738.71	93.7%
Bus 29 VFD SWBD	104.69	4.51	1.68	3738.57	93.7%

표 4. 운전조건3의 전력조류

2.4 추진성능을 갖는 FPSO의 단락전류 분석

ETAP Modeling분석을 통해 얻어진 운전조건2, 운전조건3의 단락전류(Short Circuit) 해석 결과는 표5과 같다.

11kV Bus에서 21.57KA(운전조건2) 및 8.85KA(운전조건3), 690V Bus에서 46.33KA(운전조건2) 및 37.52kA(운전조건3)으 로써 NORSOK E-001의 기준인 11kV Bus에서 40KA, 690V Bus에 서 50KA를 만족한다.

	운전	조건2	운전조건3		
Panel	KA Symm. rms	Peak Value (KA)	KA Symm. rms	Peak Value (KA)	
80-EH-001A 11kV Top. SWBD	21.57	54.28	8.85	22.21	
80-EH-002A 11kV Hull SWBD	21.45	53.85	8.84	22.16	
82-EN-003A 690V Hull SWBD	46.33	111.53	37.52	91.27	
84-EN-001A 690V Emcy SWBD	46.33	111.53	37.52	91.27	
Bus 24 VFD SWBD	67.60	162.77	54.13	130.84	

표 5. 운전조건2,3의 단락전류

2.5 추진성능을 갖는 FPSO의 전력계통의 고조파 분석

ETAP Modeling분석을 통해 얻어진 고조파 THD (Total Harmonic Distortion) 해석 결과는 운전조건2의 경우 0.95%, 운전조건3의 경우 4.98% 로서 NORSOK의 규정 5%를 만족한다.

3.결론

본 논문에서는 추진성능을 갖는 FPSO의 운전조건을 고려한 효율적인 발전기 운용을 포함한 전력 계통을 제안하고, ETAP 을 통한 해석 결과가 NORSOK 규정을 만족함을 확인하였다.

참고문헌

- [1] Maryam MADDAHI, " A Review on Offshore Concepts and Feasibility Study Considerations", Society of Petroleum Engineers Oil and Gas Conference, 2011
- [2] Timothy J. McCoy, "Trends in Ship Electric Propulsion", Power Engineering Society Summer Meeting, 2002 IEEE, Volume:1, pp. 343-346 2002.
- [3] 김철호, 윤두오, 이성근, 서동환, 김윤식, "ETAP을
 이용한 한나라호의 전력계통분석" 한국마린엔지니
 어링학회 공동학술대회 논문집, pp. 95-96, 2009.
- [4] NORSOK Standard E-001 'Electrical Systems' (Edition 5, 2007)
- [5] Sangsoo R. "Coupled dynamic analysis of thruster assisted thrret-moored FPSO, Oceans 2003, IEEE
- [6] 송길영, "신편 전력계통공학", 東逸出版社, 2008.