ST-P012

PROGRAM

Thermal Stability of Photo-produced H3O+ in the Photolyzed Water-ice Film

Eui-seong Moon, Heon Kang

Department of Chemistry, Seoul National University, Seoul 151-747, South Korea

Hyperthermal ion scattering experiments were conducted with low kinetic energy (<35 eV) cesium ion beams to analyze the UV-photolyzed water-ice films. Neutral molecules (X) on the surface were detected as cesium-molecule ion clusters (CsX⁺) which were formed through a Reactive Ion Scattering (RIS) process. Ionic species on the surface were desorbed from the surface via a low energy sputtering (LES) process, and were analyzed [1]. Using these methods, the thermal stability of hydronium ion (H₃O⁺) that was produced by UV light was examined. As the thermal stability of H₃O⁺ is related with the reaction, H₃O⁺ + OH + e⁻ (or OH) \rightarrow 2H₂O, which is similar or same with the reverse reaction of the auto-ionization of water, the result from this work would be helpful to understand the auto-ionization of H₂O in water-ice that has not been well-understood yet.

However, as H_3O^+ was not detected through a LES method, the titration experiment of H_3O^+ with methylamine (CH₃NH₂, MA), MA + $H_3O^+ \rightarrow MAH^+ + H_2O$, was conducted. In this case, the presence of MAH⁺ indicates that of H_3O^+ in the ice. Thus the pristine ice was photolyzed with UV light for a few minutes and this photolyzed ice was remained at the certain temperature for minutes without UV light. Then MA was adsorbed on that surface so that the population of H_3O^+ was found. From the calibration experiments, the relation of MAH⁺ and H_3O^+ was found, so that the thermal stability of H_3O^+ can be investigated [2].

[1] H. Kang, Accounts. Chem. Res. 38 (2005) 893.

[2] E.-S. Moon and H. Kang, Manuscript in preparation.

Keywords: proton, thermal stability, hydronium, ice, ionic defect