3상 PFC 기능을 갖는 소형풍력발전기용 AC-DC 컨버터

곽상현, 최미선, 문준선, 오용승, 안강순 (주)윌링스

Using 3 Phase PFC for Small Wind Turbine AC-DC Conveter

Sang hyun Kwak, Mi seon Choi, Joon sun Moon, Yong Seung Oh, Kang Soon Ahn Willings.Co., Ltd.

ABSTRACT

본 논문은 영구 자석형 동기 발전기(PMSG)를 사용하는 소형풍력발전기의 고조파 제거 및 단위 역률 효과를 갖는 AC DC 컨버터에 관한 내용이다. 가변속도로 제어되는 풍력발전기는 입력전압 및 전류에 많은 고조파 성분을 가지고 있다. 제안된 컨버터는 단일 스위치를 갖는 3상 승압형 정류기 형태로 인덕터 전류가 불연속모드(DCM)로 동작되며, 입력전류의고조파를 제거하여 단위 역률을 갖는 단상 220V, 3kW의 소형 풍력발전기용 컨버터이다.

1. 서론

환경 파괴의 주범인 화석연료의 과도 사용으로 인한 기후변화에 대비하기 위하여 신재생에너지에 대한 연구 및 관심이부각되고 있으며 그 중 최근 가장 주목 받고 있는 것이 풍력발전이다. 또한 정류 부하의 보급이 급속히 증가함에 따라, IEC, IEEE등 국제 기구에서는 IEC61000 3 2, IEEE 519 등과같은 규격을 제정하여 고조과 전류를 규제하고 있는 실정이다. III 전압원 인버터(VSI)는 정류 다이오드와 함께 벌크 커패시터를 사용하기 때문에 높은 고조과 성분의 전류가 흐르게 되어발전기의 철손 및 동손을 유발하며, 발전기 도체 전류 불균형에 의한 권선저항의 증가로 권선의 온도를 상승 시킨다. 이에본 논문에서는 컨버터의 입력 측에 PFC 기능을 추가하여 발전기 측 고조과 성분을 제거하고 역률을 개선하고자 한다.

2. 본론

2.1 풍력발전기의 에너지 변환 시스템

풍력발전기의 에너지 변환 시스템은 다음과 같이 풍력발전기, AC DC 정류 승압형 컨버터, DC AC 인버터로 되어있다.

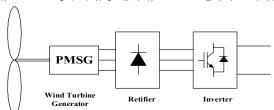


그림 1 풍력 발전기의 에너지 변환 시스템

Fig. 1 Wind turbine energy conversion system

2.1.1 제안된 단일 스위치를 갖는 3상 컨버터

제안된 컨버터는 입력단에 LCL 필터 및 3상 정류 승압형 컨버터, 계통 연계를 위한 단상 풀브릿지 형태로 구성 되어있 다

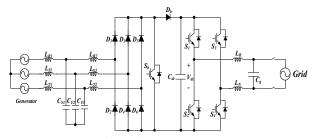


그림 2 제안된 단일 스위치를 갖는 3상 정류 승압형 AC-DC 컨버터와 풀브릿지 DC-AC 인버터

Fig. 2 A proposed single- switch 3phase boost rectifier AC-DC converter and full bridge DC-AC inverter

2.2 전류 불연속 모드 제어

본 논문에서 사용된 역률개선용 부스트 컨버터는 그림2의에너지 축적용 인덕터 L_{H2} 에 전류를 불연속으로 제어함으로서작동된다. 이런 전류 불연속모드 제어의 단점은 부스트 스위치의 스위칭 주파수에 의한 최대전류 변화로 인덕터 L_{H2} 에서 열이 발생한다. 그러나 역률이 단위 역률이 되어 THD 저감 및 풍력발전기의 성능을 향상 시킨다. 인덕터에 흐르는 전류의 실험 파형은 다음과 같다.

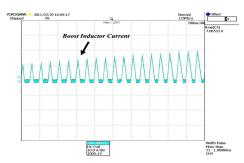
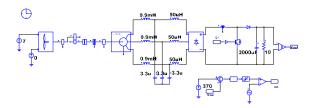
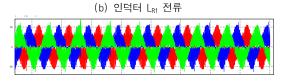


그림 3 부스트 인덕터 전류 파형


Fig. 3 Boost inductor current waveform

2.3 실험


본 논문을 검증하기 위해 Psim 툴을 이용하여 시뮬레이션을 했으며, 3kW급 소형 풍력발전기용 인버터를 제작하였다.

2.3.1 시뮬레이션 및 파라미터

다음은 3상 PFC 역률 제어를 위한 시뮬레이션 회로도이다. 부스트 스위칭 주파수는 20kHz이며, 주요 소자의 파라미터는 $L_{RI}:0.9mH$, $C_{YI}:$ 3.3uF, $L_{RS}:50uH$ 이다.

(c) 인덕터 L_{R2} 전류

그림 4 시뮬레이션 회로 및 결과 파형.

Fig. 4 Simulation circuit and result waveform

표 1 소형풍력용 전력변환 시스템 파라미터 Table 1 Small wind turbine power conversion system parameters

입력전압		50~220Vac	출력전압	220Vac
스위칭	컨버터	20kHz	출력전류	13A
주파수	인버터	10kHz	출력	3kW
입력역률		99%	최대 효율	90%
출력 역률		99%	MPPT전압	55~210Vac

2.3.2 실험파형

다음은 소형풍력발전기용 계통연계형 인버터의 실험 파형이다. 그림5는 발전기측 선간 전압과 선전류로 30°의 위상차를 가지고 있다.

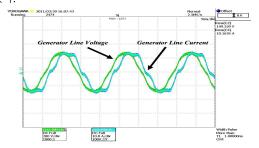


그림 5 풍력 발전기 측 선간 전압 및 선간 전류 파형 Fig 5. Wind generator side line voltage and line current waveform.

그림 6은 무부하에서 최대부하로 변경 시 소프트 스타팅 되

는 DC전류와 계통 측 출력전류 변화를 나타낸다.

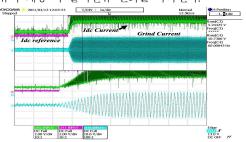


그림 6 DC 전류 지령치, DC 전류, 계통 측 출력 전류파형 Fig 6. Grid side current, DC current reference and DC current waveform.

최대부하 시의 출력전압과, 출력전류는 아래의 그림7과 같고 AC 220V, 13.26A 로 최대 출력은 3kW의 성능을 나타낸다.

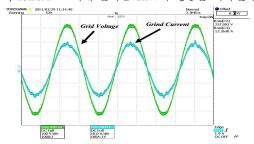


그림 7 계통측 출력전압 및 출력 전류 파형 Fig 7. Grid side voltage and current waveform.

3. 결론

실험결과 역률 99%, 출력 3kW 최대 효율 90%로 측정 되었고, 제품 사진은 아래와 같다.

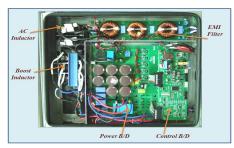


그림 7 계통연계형 소형풍력발전기용 인버터 Fig 7. Grid connected small wind turbine inverter

이 논문은 호남광역권 선도산업의 연구비 지원에 의하여 연구되었슴

참 고 문 헌

- [1] 곽동걸, "소프트 스위칭형 PFC 승강압 AC DC 컨버터에 관한연구", 전력전자학회, Inc. pp. 435 437, 1978.
- [2] Fernando Soares dos Reis "Using PFC for Harmonic Mitigation in Wind Turbine Energy Conversion Systems", Proceedings of the IEEE, Vol. 3, pp. 3100 3105, 2004, NOV.