직류 배전 시 가전기기 입력단 파워부의 커패시터 설계

구근완, 전준영, 신승민, 이병국 성균관대학교 정보통신공학부

Design of Power Part Capacitor at DC Distribution system

Keun Wan Koo, Joon Young Jeon, Seung Min Shin, Byoung Kuk Lee School of Imfrmation and Communication Engineering, SungKyunKwan

ABSTRACT

본 논문에서는 가정용 직류배전시스템 도입 시 가전기기 입력단 커패시터의 용량 산정 및 최적화 가능성 검증을 위하여 직류배전시스템용 가전기기 입력단 및 PWM 컨버터 출력단사이의 관계를 전압방정식의 형태로 모델링 한다. 또한 모델링된 전압방정식을 이용하여 대용량 부하변화 시 발생가능 한 Sag 및 Surge 규격에 부합하는 커패시터의 용량을 산정하고시뮬레이션을 통하여 검증한 뒤 직류배전시스템 가전기기 설계의 가이드라인을 제시한다.

1. 서 론

최근 신재생에너지원 사용의 증가와 가정에서 사용하는 디 지털 부하의 증가에 따라 가정용 직류배전시스템의 도입이 검 토 되고 있다. 일반적인 교류가전기기의 입력단은 디커플링 (Decoupling) 및 전압 평활을 위한 전해커패시터와 응답특성이 빠른 필름커패시터의 병렬 구조로 이루어져있고 이 경우 전해 커패시터는 필름커패시터에 비하여 대용량 커패시턴스를 확보 할 때 비용측면에서 유리하나 상대적으로 부피가 크고 무거우 며 수명이 낮아 시스템 전체의 대형화와 수명저하의 핵심적인 요인이 된다는 단점이 있다. 직류배전시스템의 경우 직류가전 기기 입력단의 정류부 및 역률 개선 회로가 제거되고 따라서 PWM컨버터의 출력단 커패시턴스가 충분히 크다면 병렬로 구 성된 가전기기 입력단 커패시턴스를 줄일 수 있어 전해커패시 터를 사용하지 않아도 되는 장점을 가질 것이라 예측되고 있으 나 실제 선로의 인덕턴스와 저항등의 기생성분, 대용량 부하변 화 및 시스템을 통해 유입되는 노이즈 성분 등을 고려한 구체 화는 이루어지지 않고 있다.

따라서 본 논문에서는 기생성분을 고려한 직류배전 출력단과 직류가전기기의 입력단의 관계를 모델링하여 과도상태 및 정상상태의 가전기기 입력단 전압방정식을 도출하였고 도출된 방정식을 이용하여 대용량 부하변화 시 부하입력단의 Sag 및 Surge발생 규격을 만족시키는 입력단 커패시터 용량을 산정하였다. 산정된 커패시터 용량은 PSIM을 이용한 시뮬레이션을 통하여 검증하였으며 이는 직류가전기기 설계 시 대용량 부하변동 측면에서 입력단 전해 커패시터의 제거가능성을 입증한다.

2. 커패시터 용량 산정

2.1 PWM 컨버터 및 커패시터의 등가회로

직류가전기기 입력단의 커패시터 용량을 산정하기 위해서 PWM 컨버터의 출력단, 실제 연결 선로 및 가전기기 입력단 커패시터를 등가화하여 모델링하였고 이를 표 1 및 그림 1에 나타내었다.

표 1 등가 회로 파라미터

Table 1 parameter of equivalent circuit

C_1	PWM 컨버터 출력단	C_2	가전기기 입력단
	커패시터		커패시터
L	기생 인덕터 성분	R	기생 저항 성분
V_{C1}	C1의 전압	V_{C2}	C2의 전압
V_{diff}	C2 전압과 C1 전압의 차이		

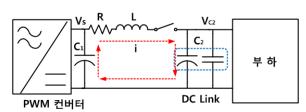


그림 1 PWM 컨버터 출력단과 가전기기 커패시터 등가회로도 Fig. 1 Equivalent circuit of PWM converter output port capacitor and capacitor of appliance

2.1.1 등가 회로 해석

가전기기 입력단 커패시터의 전압변화를 해석하기 위해 그림 1의 회로를 라플라스 변환을 사용하여 회로를 해석하면 다음과 같은 주파수 영역의 전류에 대한 함수가 얻어지게 된다.

$$i(s) = \frac{\frac{V_{diff}}{s}}{R + sL + \frac{1}{s}(\frac{1}{C_1} + \frac{1}{C_2})} = \frac{\frac{V_{diff}}{L}}{s^2 + \frac{R}{L}s + \frac{1}{LC}}$$
(1)

(단,
$$\frac{1}{C_1} + \frac{1}{C_2} = \frac{1}{C}$$
)

따라서 커패시터의 전압은 식 (2)와 같이 된다.

$$V_{C2}(s) = \frac{\frac{V_{diff}}{L}}{s^2 + \frac{R}{L}s + \frac{1}{LC}} \times \frac{1}{sC_2}$$
 (2)

위 식을 시간영역으로 역변환 하면 식 (3)와 같이 된다.

$$V_{C2}(t) = V_{diff} \frac{C_1}{C_1 + C_2} \left(1 - \frac{1}{\sqrt{1 - (\frac{R}{2L}\sqrt{LC})^2}}\right)$$

$$\times e^{-\frac{R}{2L}t} \sin\left(\sqrt{\frac{1 - (\frac{R}{2L}\sqrt{LC})^2}{LC}}t\right)\right)$$
(3)

위 식 (3)는 가전기기 입력단 커패시터의 전압을 순시적으로 나타낸다. 식에서 지수의 계수는 순간적인 전압강하와 전압상 승의 크기를 나타내고 지수항의 지수는 감쇠량을 나타낸다. 또한 삼각함수 주파수 성분은 감쇠하는 파형의 진동수를 나타낸다. 위 식에서 Sag와 Surge의 크기는 직류배전단 커패시터인 C_1 뿐만 아니라 가전기기 입력단 C_2 의 커패시터 용량에도 영향을 받으며 C_2 의 크기가 증가할수록 Sag 및 Surge의 크기가 감소하는 것을 확인할 수 있다.

2.2 커패시터 용량 산정

직류가전기기의 입력단 커패시터 용량 산정에 앞서 정상상 대 전압을 일정하게 유지하기 위하여 PWM 컨버터의 출력단 커패시터용량의 산출이 필요하다.

2.2.1 PWM 컨버터 출력단 커패시터 용량산정

정상상태의 리플을 일정하게 유지시키기 위해 PWM 컨버터 출력단의 커패시터의 용량을 아래의 과정을 통하여 산정하였다. 식 (6)을 통해 5kW급 출력에 허용리플 1%를 가지도록 커패시터의 용량을 산정하면 346uF이 된다.

표 2 커패시터 용량산정 식의 파라미터 설명 Table 2 explain of parameter

ΔE_{Load}	부하의 에너지 변화량	Δv_{DC}	직류링크 전압변동률
ΔP_{Load}	부하의 전력 변화량	v_{DC}	직류링크 전압
ΔT_{SW}	스위칭 주기	C	커패시터 용량
ΔP_{C}	커패시터의 저력 변화량		

$$\Delta E_{Load} = \Delta P_{Load} \Delta T_{SW} = \Delta P_C \Delta T_{SW} \tag{4}$$

$$\Delta P_C = C \frac{\Delta v_{DC}}{\Delta T} v_{DC} \tag{5}$$

$$C = \frac{\Delta P_C \Delta T}{\Delta v_{DC} v_{DC}} \tag{6}$$

2.2.2 가전기기 입력단 커패시터 용량 산정

식 (3)에서 V_{C2} 의 값을 Sag, Surge의 안전 기준치인 정상상태 전압의 90%, 110% 로 설정하고 C_2 에 값을 구하면 약 $120\mathrm{nF}$ 이 된다 $^{[2]}$.

2.3 시뮬레이션

시뮬레이션은 PSIM을 이용해 진행하였으며 5kW급 전력을 공급할 수 있는 PWM 컨버터에 2kW급 부하의 변동이 있을 때를 가정하여 저항 값을 선정하였고, 정상상태에서 리플이 1%이하가 되도록 C_1 의 값을 선정하였다. 선로의 기생성분의 값은 LRC 미터기를 사용해 4Φ 의 두께를 가진 전선 0.5m의 기생성분을 구하고 이 값을 기준으로 전선에 길이에 저항과 인 덕턴스 성분이 비례하여 증가한다고 가정하여 5m 길이의 전선의 기생 저항성분과 기생 인덕턴스 성분을 구하였다.

표 3 시뮬레이션 파라미터 Table 3 simulation parameter

C_1	346uF	C_2	60nF부터 20nF 씩 140nF까지 변경
L	8uH	R	$35 \mathrm{m}\Omega$
R_{load1}	72.2Ω	R_{load2}	96.2Ω

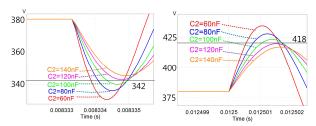


그림 2. 부하가변 시 가전기기 입력단 커패시터 전압의 Sag 와 Surge 전압 파형

Fig 2. voltage of capacitor on appliance input at load swing

시뮬레이션 결과는 Sag와 Surge 만을 고려하여 커패시터의 용량을 산정할 때 기존 가전기기 입력단 설계에 쓰이던 전해 커패시터와 필름 커패시터 중 전해 커패시터를 제외한 필름 커 패시터만으로 가전기기의 입력단 커패시터를 설계 할 수 있다 는 점을 나타낸다.

3. 결 론

본 논문에서는 직류배전시스템을 도입할 때 가전기기 입력 단의 커패시터의 최적화 산정 및 검증을 위해 PWM 컨버터와 직류 배전 시스템용 가전기기 입력단 커패시터로 구성된 회로 를 수학적으로 해석하여 가전기기 입력단 커패시턴스 값을 선 정할 수 있는 수식을 도출 하였다. 도출된 수식은 기존의 가전 기기 입력단 커패시터 설계에 사용되던 전해 커패시터와 필름 커패시터 중에서 전해 커패시터를 사용하지 않아도 되는 근거 를 제시한다.

참 고 문 헌

- [1] N. G. Hingorani, "High voltage DC transmission: a power electronics workhorse," IEEE Spectrum, vol. 33, no. 4, April 1996, PP. 63 72
- [2] 최홍기, "순간 전압강하 시 voltage Sag protector에 의한 전원회로 개선에 관한 연구", 충주대학교 석사학위 논문, 2008.