복소 라플라스-페이저 변환을 이용한 무선전력전달용 DQ 인버터 해석

이성우*, 박창병*, 임춘택**

*Dept. of EE,

**Dept. of Nuclear and Quantum Engineering KAIST 335 Gwahangno, Yuseong-gu, Daejeon, 305-701, KOREA

Abstract

자기유도방식 무선전력전달용 DQ 인버터의 정적 동작 특성 및 동적 응답 특성을 해석하는데 복소 라플라스 변환을 페이저 변환된 회로에 적용하는 방법을 사용하였다. 최근에 발표된 복소 라플라스-페이저 변환이론이 교류 컨버터의 동적특성을 해석하는데 있어 실용적으로 아주 유용하다는 것이 연구를 통해서 확인되었다. 기존의 라플라스 변환을 복소수 영역으로 확대한 복소 라플라스 변환을 페이저 변환된 회로에 적용하면 전달함수를 구할 수 있어, 시스템의 안정도 가능해진다. 본 논문에서는 분석과 제어기 설계가 이론식을 유도하고 시뮬레이션을 통해 검증하였다.

1. 서론

스위치의 시변 특성은 스위칭 파워 컨버터의 해석을 어렵게 만든다. 특히 단상, 다상의 AC 컨버터의 경우, 상태공간평균기법, 스위칭함수 푸리에 급수 해석, D-Q 변환 등의 기존에 쓰여왔던 스위칭 컨버터의 해석 기법을 적용하는 데에 한계가 있다. 이를 해결하고자 모든 종류의 스위칭 컨버터에 적용가능한 복소 라플라스-페이저 변환이 제안 되었다[1],[4].

본 논문에서는 복소 라플라스-페이저 변환을 이용하여, 그림. 1과 같은 자기유도방식 무선전력전달용 DQ 인버터의 정적 동작 특성 및 동적 응답 특성을 해석하였으며, 이를 시뮬레이션을 통하여 검증하였다.

2. DQ 인버터의 복소 라플라스-페이저 변환

한번에 전체 회로의 전달함수를 구하는 것은 너무 복잡하기 때문에, 크게 2개 회로로 나눴다.

그림. 2 (a)는 DQ 인버터의 1차측 회로이며, 그림. 2 (b) 는 복소 라플라스-페이저 변환을 이용하여 나타낸

그림. 2 (a) DQ 인버터의 1차측 실제 회로 (b) DQ 인버터 1차측의 복소라플라스-페이저변환 회로

등가회로 이다.

인버터의 스위치 폴은 복소 턴비 **D**₁ 를 가지는 트랜스포머로 모델링이 가능하다 [2]. 그림. 2 (b) 의 회로에서,

$$L_{eq1} = L_{1} \left(1 + \frac{\omega_{r1}^{2}}{\omega_{s}^{2}} \right), \quad X_{eq1} = \omega_{s} L_{1} \left(1 - \frac{\omega_{r1}^{2}}{\omega_{s}^{2}} \right)$$
(1)

$$\omega_{r1} = \frac{1}{\sqrt{L_1 C_1}} \tag{2}$$

그림. 3. $\omega_{s} > \omega_{r1}$ 조건에서의 DQ 인버터 1차측의 등가회로

와 같이 정의 할 때, ω_{r1} 이 인버터의 스위칭 주파수 ω_s 보다 낮을 경우, (1) 에서 볼 수 있듯이 $X_{eq1} >> L_{eq1}$ 의 관계가 성립하게 된다. 따라서 DQ 인버터의 1차측을 그림. 3 과 같이 간단히 나타낼 수 있다[2],[3]. 그림. 3 에서 $V_m(s)$ 은 Back EMF 전압이다. 그림. 3의 등가회로에서 DQ 인버터 1차측 전류를

$$I_{1}(s) = \frac{D_{1}D_{b}V_{a}(s) - sD_{1}L_{b}I_{dc}(s) - V_{m}(s)\left(1 + s^{2}C_{b}L_{b}\right)}{jX_{eq1}\left(1 + s^{2}C_{b}L_{b}\right)}$$
(3)

$$I_{dc}(s) = \frac{jX_{eq1}D_1\{V_m(s) - V_m^*(s)\}}{2X_{eq1}^2}$$
(4)

(3) 과 같이 구할 수 있다.

그림. 4 (a)는 DQ 인버터의 2차측 회로이며, 그림. 4 (b) 는 복소 라플라스-페이저 변환을 이용하여 나타낸 등가회로 이다. 그림. 4 (c)의 회로에서,

그림. 4 (a) DQ 인버터의 2차측 회로 (b) DQ 인버터 2차측의 페이저 변환 회로 (c) ω_s = ω_{r2} 조건에서의 DQ 인버터 2차측의 등가회로

그림. 5 $\omega_{s} = \omega_{r2}$ 조건에서의 DQ 인버터 2차측의 등가회로

때, ω_{r2} 가 인버터의 스위칭 주파수 ω_s 와 같을 경우, DQ 인버터의 2차측을 그림. 5 과 같이 간단히 나타낼 수 있다[2],[3]. 그림. 5의 등가회로에서 DQ 인버터 2차측 출력 전압을

$$V_{L}(s) = \frac{nL_{m}D_{2}Z_{L}(s+j\omega_{s})I_{1}(s)}{sL_{eq2}+D_{2}^{2}Z_{L}}$$
(7)

와 같이 간단히 구할 수 있다.

그림. 6 인버터의 transient simulation 과 Phasor transformation 으로 구한 전달함수의 step 응답 (Red line : Matlab simulink, Blue line : Step response)

인버터를 근사화 하는 과정에서 약간의 오차가 발생하였으나, phasor transformation을 통해 구해진 전달함수가 인버터의 전체적인 응답특성을 잘 반영하고 있다.

4. 결론

복소 라플라스-페이저 변환을 이용하면, 복잡한 교류 컨버터를 회로 변환 기법 만으로 정적/동적 응답 특성을 구할 수 있다. 이를 이용하여 무선전력전달에 사용되는 DQ 인버터를 간단한 등가회로로 치환할 수 있음을 보였으며, 전달함수 또한 쉽게 구할 수 있음을 보였다.

Reference

- C. T. Rim, "Unified General Phasor Transformation for AC Converters," IEEE Trans. Power Electron. (accepted for publication).
- [2] C. T. Rim and G. H. Cho, "Phasor transformation and its application to the dc/ac analyses of frequency phase-controlled series resonant converters (SRC)," IEEE Trans. Power Electron., vol. 5, pp. 201-211, Apr. 1990.
- [3] C. T. Rim, "Analysis of linear switching systems using circuit transformations," Ph.D. dissertation, KAIST, Seoul, Feb. 1990.
- [4] C. T. Rim, "Dynamic Phasor Transformation by Complex Laplace Transformation," IEEE Trans. Power Electron. (submitted for publication).