Effect of Rice Cultivars on CH₄ Emission related Microbial Activity in Paddy Soil (벼 품종이 메탄 생성균과 산학균 활성에 미치는 영향) Sang Yoon Kim¹* · Jessie Gutierrez¹ · Yong Gwon Park¹ · Pil Joo Kim^{1,2} 김상윤¹* · 제시구티어레즈¹ · 박용권¹ · 김필주^{1,2} ¹Division of Applied Life Science (BK 21 Program), Gyeongsang National University, Jinju, ²Institute of Agriculture and Life Science, Gyeongsang National University, Jinju ¹경상대학교 응용생명과학부 (BK 21 program), ²경상대학교 농업생명과학연구원 Rice cultivar is one of the important factors to control methane (CH₄) emission from the flooded paddy soil during rice cultivation. But the relationships between rice cultivars and activities of microorganisms related to CH₄ production and oxidation were not studied well. In this study, CH₄ emission was investigated using different rice cultivars by closed-chamber methodology during rice cultivation. Rice cultivars included two early-maturing varieties (Odae and Woonkwang) and six medium-late maturing varieties (Nampyeong, Dongjin, Samkwang, Ilmi, Junam, Chuchung) cultivated under standard cultivation condition in a typical paddy soil (Yuga series). To quantify the related microorganisms affecting CH₄ emission, methanogenic and methanotrophic activities were compared by quantitative PCR analysis during CH₄ emission peak season. Specifically, low and high affinities methane oxidation potential were also evaluated by an incubation test at 37°C for 23 days. Total CH₄ flux was lowest in Dongjin (late maturing), and increased in the order of Chuchung ≤ Ilmi ≒ Woonkwang ≒ Junam ≒ Samkwang < Odae ≒ Nampyeong. Despite shorter cultivation period with early-maturing varities, no significant decreasing effect on CH₄ emission was observed. Higher mcrA gene copies which is responsible for increasing CH₄ emission were quantified in Odae and Nampyeong varities, while Dongjin and Odae showed higher pMMO gene copies involved in methanotrophy. Even though rice biomass productivity is known to have strong positive correlation with CH₄ emission having similar rice cultivar condition, we could not find any statistical correlation with plant growth and yield characteristics to seasonal CH₄ flux but mcrA gene copy number showed high positive correlation with CH₄ emission. Rice cultivars showed different CH₄ oxidation potentials, which negatively correlated with CH₄ emission. This result suggested that CH₄ dynamics might be strongly affected by the other factors such as root activities and exudates, which influenced methanogenic and methanotrophic activities during rice cultivation. **Key words:** methane emission, rice cultivar, cultivar effect, rice productivity Corresponding author: E-mail. pjkim@gnu.ac.kr; Tel. 055-772-1966