전면 발광 유기발광다이오드의 마이크로 캐비티 효과에 관한 연구

한가람, **김일영**, 민상홍, 김현수, 홍진수^{*}, 김창교 순천향대 전자정보공학과, ^{*}순천향대 전자물리학과

A study on the effect of micro cavity of top emission organic light-emission diode

Ga-Ram Han, II-Young Kim, Sang-Hong Min, Hyun-Su Kim, Chinsoo Hong, Chang Kyo Kim Dept. of Electronic Information Engineering. Soonchunhyang University, *Dept. of Electronic Physics, Soonchunhyang University

Abstract - 본 논문에서는 양극을 Ni, Au, Ag 등으로 하여 소자 를 만들어 본 후에 가장 효율이 좋은 금속으로 양극을 정하고 유기물 층의 두께에 따른 마이크로 캐비티에 의한 스펙트럼의 이동효과를 시뮬레이션을 통해 살펴보았다. 소자의 기본 구조는 전면 발광 방식으로 양극/NPB/Alq3/LiF/Al이다. 음극을 LiF/Al 과 Mg/Ag로 구조로 제작한 후에 기본 구조와 결과를 비교하였 다. 실험결과를 시뮬레이션 결과와 비교 검토하였다.

1. 서 론

디스플레이용 색순도를 향상시키기 위해 마이크로 캐비티 구 조를 OLED(organic light-emitting diode)에 적용하는 연구가 진 행되고 있다[1,2]. 마이크로 캐비티를 OLED 구조에 채용하는 주 요한 효과는 특정한 파장의 광자를 재배치하는 것이다. 금속전극 에서의 빛의 흡수 때문에 마이크로 캐비티 구조를 갖는 OLED로 부터 색순도의 증가와 휘도 증가를 예측하는 것은 어려운 일이 다. 본 논문에서는 금속전극구조를 갖는 마이크로 캐비티 OLED 의 발광 특성을 시뮬레이션하였다[3]. 시뮬레이션 결과를 실험 결과와 비교하여 마이크로 캐비티 효과를 확인하였다.

2.실 험

2.1 전극 물질 선정

2.1.1 양극, 음극 재료

전면 발광 OLED에서는 생성된 빛이 양극(anode)에 반사되어 음극(cathode)방향으로 발광되어야 한다. 양극은 정공 주입 효율 이 우수한 Au와 Ag를 채택하였고 음극은 LiF:Al과 Al:Ag, Mg:Ag를 사용하여 각각 증착한 후 비교해 보았다.

2.1.2 유기층 구조

양극와 음극의 최적의 조건을 찾은 후에 마이크로 캐비티의 효과로 인한 스팩트럼 파장의 이동을 미리 예측하고 조절하는데 목적이 있다. 유기층의 구조는 glass / anode / NPB / Alq₃ / cathode이다. 유기층의 두께에 따라 마이크로 캐비티 효과로 인 해 스팩트럼의 파장이 이동하는데 이것을 예측하기 위해 MathematicaTM로 프로그램을 코딩하여 시뮬레이션을 실시하였 다.

2.2 시뮬레이션

시뮬레이션을 통하여 소자의 구조를 설계하였다. 시뮬레이션은 MathematicaTM를 이용해서 코딩하였다. OLED 내의 유기물과 양극, 음극의 두께, 각 물질의 파장에 따른 굴절률, 편광방향을 변수로 하여 시뮬레이션을 수행하였다. 편광 방향은 TE와 TM의 두 가지 방향으로 설정하였다. 기관의 정면을 0도로 두고 양 방 향으로 32도까지 1도 간격으로 하여 방출되는 빛의 파장과 크기 를 시뮬레이션하였다.

2.3 소자 제작

2.3.1 양극 증착

E-beam evaporator을 이용하여 양극으로 이용되는 Ni을 증착 하였다. 순도는 99.99%인 Ni 소스를 이용 하였고 두께는 1000Å 을 0.1Å/s의 증착율로 증착하였다. 다른 양극 재료인 Au는 기판 유리(glass)와 접착력(adhesion) 높이고 반사도를 높일수 있는 100Å두께의 Ni을 E-beam evaporator를 이용하여 증착한 후에 순도 99.999%의 500Å 두께의 Au를 증착하였다. 다른 양극 물질 인 500Å 두께의 Ag(순도 99.99%)는 thermal evaporator로 500 Å 증착 하였다.

2.3.2 0,플라즈마 표면 처리

유기물 증착에 앞써 O_2 플라즈마를 이용하여 표면 처리를 해야 한다. 공정조건은 O_2 를 25 sccm으로 공정압력 6.0×10^{-3} torr에 서 50 W로 300sec 동안 실시하였다.

2.3.3 유기물 증착

유기물은 1.0×10⁻⁶ torr 고진공 상태에서 증착을 실시하였다. 증착되는 구조는 anode / NPB / Alq3 / cathode 이다. 우선 NPB를 1 Å/s의 증착율로 600Å 증착한 후 Alq3를 400Å두께로 증착하였다.

cathode는 각각 LiF:Al, LiF:Ag, LiF:Al:Ag를 증착하였는데. LiF:Al의 경우에는 LiF를 0.1 Å/s의 증착율로 10Å, Al을 1.0 Å /s의 증착율로 250Å두께로 증착시켰고, LiF:Ag의 경우는 LiF를 10Å증착 후 Ag를 1Å/s로 250Å두께로 증착하였다. Al:Ag은 LiF를 증착후, Al을 20Å/s, Ag를 1Å/s으로 280Å 증착하였다.

3. 결과 및 고찰

3.1 양극이 Ni인 소자의 시뮬레이션 결과

<그림 2> 양극이 Ni인 소자의 스펙트럼

결과를 보면 음극이 Al일 경우보다 Ag나 Al:Ag일 경우가 상 대적인 세기가 높았다. 색의 순도에 영향이 있는 반폭치도 Al:Ag의 경우가 가장 좋게 나온 것으로 보아 Ni가 양극인 경우 Al:Ag이음극일 때 가장 좋은 결과를 나타내는 것을 알 수 있었 다.

3.2 양극이 Au인 소자의 시뮬레이션 결과

양극으로 Au를 사용할 경우에 상대적인 빛의 세기를 보면 양 극이 Ni일 때 보다 상대적으로 빛의 세기가 더 높게 나온 것을 볼수 있는데 이것은 Au의 일함수가 Ni보다 낮고 정공 주입 능력 이 우수한 것으로 설명할 수 있다. 그리고 양극이 Ni와 Au일 때 스펙트럼을 보면 잘 알려진 Alq3의 발광 스펙트럼인 515nm보다 긴 파장 쪽으로 이동된 것을 확인 할수 있는데 이것은 마이크로 캐비티 효과에 의한 것이라고 할 수 있다.

3.5 유기물 두께에 따른 마이크로 캐비티 간섭에 의한 소자 증착 결과

<그림 3> 양극이 Au인 소자의 스펙트럼

3.3 유기물 두께에 따른 마이크로 캐비티 효과 예측을 위한 시뮬레이 션 결과

<그림 4> 유기물 두께에 따른 소자의 스펙트럼

양극을 Au로 하고 음극은 Al:Ag로 하여 유기층 두께에 따른 마이크로 캐비티 효과를 시뮬레이션하였다. <그림4>는 유기물 두께 변화에 따른 시뮬레이션 결과를 보여 주고 있다. 유기물 두 께가 120 nm일 때 발광하는 빛의 세기가 가장 높았다.

3.4 양극이 Au인 소자 결과

시뮬레이션 결과를 토대로 하여 소자를 제작하였다. <그림 5>는 시뮬레이션 결과와 소자를 측정하여 얻은 결과를 보여주 고 있다. 양극이 Au일 경우에도 음극이 Al:Ag일 때 발광하는 빛의 세기가 가장 높았다. 실제 측정치과 시뮬레이션 값이 약간 의 오차는 있지만 거의 일치하는 것을 볼 수가 있다.

<그림 5> 시뮬레이션(a)과 측정값(b) 비교

<그림 6> 시뮬레이션(a)과 측정값(b) 비교

실제 양극은 Au로 하고 음극은 AgAl로 하여 소자의 두께에 따른 마이크로 캐비티 간섭에 의한 스펙트럼 이동을 관찰 해 보 았다. 유기층은 NBP:Alq3로 85(51:34)nm, 100(60:40)nm, 120(72:48)nm, 140(84:56)nm, 165(99:66)nm로 하여 소자를 제조하 였다. <그림6>은 유기물 두께 변화에 의한 시뮬레이션과 소자의 측정 결과를 나타내고 있다.

발광하는 빛의 파장이 120 nm때 가장 높은 빛의 세기를 보여 주었으나 색 순도에 영향을 주는 반폭치는 100 nm일 때가 우수 하였다. 유기층 두께가 두꺼워 질수록 마이크로 캐비티 효과에 의한 긴 파장 쪽으로의 이동하였다.

4. 결 론

전면 발광 유기발광다이오드 마이크로 캐비티 효과를 시뮬레 이션한 결과를 이용하여 소자를 제작하였다. 양극이 Ni, Au일 때 음극으로 Al, Ag, Al:Ag중에서 Al:Ag일 때 가장 높은 발광 빛의 세기를 보여 주었다. 제작된 소자의 광학 특성가 시뮬레이션 결 과과 매우 유사하였다. 발광하는 빛의 파장이 120 nm때 가장 높 은 빛의 세기를 보여주었으나 색 순도에 영향을 주는 반폭치는 100 nm일 때가 우수하였다. 유기층 두께가 두꺼워 질수록 마이 크로 캐비티 효과에 의한 긴 파장 쪽으로의 이동하였다.

[참 고 문 헌]

[1] C.-W. Chen, P.-Y. H' 도, H.-H. Chiang, C.-L. Lin, H.-M. Wu, and C.-C. Wu, Appl. Phys. Lett. Vol. 83, 021101, 2005. [2] M.-H. Lu, M. S. Weaver, T. X. Zhou, M. Rothman, R. C. Kwong, M. Hack, and J. J. Brown, Appl. Phys. Lett. Vol. 81, pp. 3921-3923, 2002.

[3] 홍진수, 디스플레이광학 및 색체이론, 순천향대학교, 2009.