Analysis of Phenolic compounds Contents in *Miscanthus sinensis* Cultivars by HPLC

¹College of Life and Environment science, Konkuk University. Seoul 143-701, Korea, ²College of Agriculture and Life science, Kangwon National University, Chuncheon 200-701

<u>Suk-jun Jung¹</u>, Eun-hye Kim¹, Seok-ju Kim¹, Jung-woong Kwon¹, Sung-hyun Song¹, Soo-jung Yong¹, Mi-so Jang¹, Ye-ji Lee¹, Ha-jung Kim¹, Chang-yeon Yu², Hong-keun Song¹, Jong-guk Ahn¹, Ill-min Chung^{1*}

HPLC를 이용한 억새 종의 페놀성 화합물 함량의 분석

¹건국대학교 생명환경과학대학, ²강원대학교 농업생명과학대학

정석준¹, 김은혜¹, 김석주¹, 권정웅¹, 송성현¹, 용수정¹, 장미소¹, 이예지¹, 김하정¹, 유창연², 송홍근¹, 안종국¹, 정일민^{1*}

Objectives

Phenolic compounds have played important roles in plant as antioxident, antibacterial and anticancer effects. Recently, *Miscanthus sinensis* cultivars are grown because of their use of bioenergy resources. But, there is little research on their functional material. The purpose of this research was to analyze the phenolic compounds contents in leaves and stems of *Miscanthus sinensis* cultivars using High Performance Liquid Chromatography.

Materials and Methods

 \circ Materials

-Samples were classified by collected four regions: 1. Dunnae-myeon, Hoengseong-gun 2. Bangdong-ri, Inje-gun 3. Dongsan-myeon, Chuncheon-si and 4. Iowa.

-Parts of samples : Leaf and stem

 \circ Methods

Preparation of samples

2 g of dried and ground samples were extracted in 10 mL of acetonitrile and 2 mL of 0.1 N HCl, and stirred for 2h at room temperature. The extract was filtered through a No. 42 Whatman filter paper and concentrated by vacuum evaporator. Residues were redissolved with 10 mL of 80% aqueous methanol (HPLC grad, J.T. Baker, USA), and filtered through a 0.45 μ m syringe filter and then transferred to 2 mL vials.

Corresponding author : Ill-min Chung E-mail : <u>imcim@konkuk.ac.kr</u> Tel : 02-450-3730

Phenolic compounds analyses

The HPLC system was performed using Agilent 1100 series with PDA detector (Germany). Separation was conducted on a YMC-Pack ODS-AM-303 (5 μ m, 250 mm × 4.6 mm I.D.) column. And, 20 μ L of filtrate were infected in the HPLC system; the same system and column being used as for phenolic compounds analyses. Compounds were detected at a wacelength of 280 nm. The mobile phases were distilled water with 0.1 % glacial acetic acid (solvent A) and acetonitrile with 0.1 % glacial acetic acid (solvent A) and acetonitrile with 0.1 % glacial acetic acid (solvent B). The gradient was followed: 0 min, 92% A : 8% B ; 0–2 min, 90% A : 10% B ; 2–27 min, 70% A : 30% B ; 27–50 min, 10% A: 90% B; 50–51 min, 0 % A : 100% B ; 51–60 min, 0% A : 100% B ; 60–63 min, 92% A : 8% B. Run time was 60 min using a flow rate of 1 mL min⁻¹.

Results and Discussion

The results of this study showed that total average contents of phenolic compounds were 6929.4 μ g g⁻¹. The highest concentration of phenolic compounds was in the Dunnae-myeon leaf(12418.6 μ g g⁻¹) and the lowest concentration was in the Dongsan-myeon stem(2109.3 μ g g⁻¹). Also, the contents of phenolic compounds in all kinds of leaves were higher than those of the stem. And syringic acid revealed the highest contents of phnolic compounds in every sample. The results of this study showed differences between leaf and stem. These results suggested that *Miscanthus sinensis* cultivars can be used for functional materials.

Area	Part	Accessions			
Dunnae-			Area	Part	Accessions
myeon	Leaf	HDL	Dongsan-	Leaf	CDL
Dunnae-	Stem	HDS	myeon	2001	021
myeon	Stem	1105	Dongsan-	Stem	CDS
Bangdong-	Last	IDI	myeon	0.000	020
ri	Leaf	IBL	Iowa	Leaf	IOL
Bangdong- ri	Stem	IBS	Iowa	Stem	IOS

Table 1. 4 types of Miscanthus cultivars

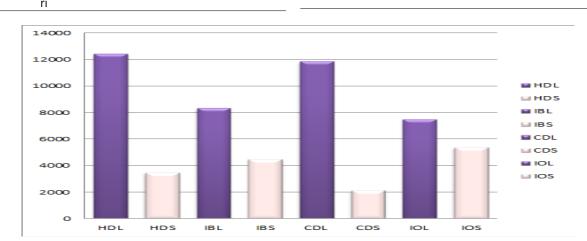


Figure 1. The total contents of phenolic compounds in *Miscanthus* cultivars leaf and stem