Synergistic effect of emodin in combination with ampicillin or oxacillin against methicillin-resistant *Staphylococcus aureus*

¹National Institute of Horticultural & Herbal Science, RDA ²College of Pharmacy and Wonkwang–Oriental Medicines Research Institute, Wonkang University <u>Young–Seob Lee</u>¹, Sin–Hee Han¹, Su–Hwan Lee¹, Young–Guk Kim¹, Chung–Berm Park¹ Su–Hyun Mun², Sung–Bae Kim², Joon–Ho Keum², Ok–Hwa Kang², Dong–Yeul Kwon²

메티실린에 내성을 가진 포도상구균에 대하여 에모딘을 포함한 암피실린 또는 옥사실린의 상승효과

농촌진흥청 : <u>이영섭</u>^{*}, 한신희, 이수환, 김영국, 박충범 원광대학교 : 문수현, 김성배, 금준호, 강옥화, 권동렬

Objectives

The pharmacological tools available to cure MRSA being limited today, new agents to treat MRSA-associated infections are greatly needed. The treatment guidelines for these infections recommend combinations of antibiotics against these pathogenic organisms. *Rheum palmatum*, popularly known as Daehwang, has traditionally been used as an oriental folk medicine. The emodin (EM) is biologically active and naturally occurs in anthraquinone found in Rheum palmatum and related plants such as rhubarb. Thus, here we present a study that shows the antimicrobial activity of EM against MRSA and Methicillin sensitive Staphylococcus aureus (MSSA) strains, as well as its ability to lower the MICs of β -lactam antibiotics.

Materials and Methods

Bacterial strains and growth conditions : Among the 17 *S. aureus* strains used in this study, 15 clinical isolates (MRSA) were obtained from 15 different patients at Wonkwang University Hospital (Iksan, South Korea). The other two strains were S. aureus ATCC 33591 (methicillin-resistant strain) and *S. aureus* ATCC 25923 (methicillin-susceptible strain).

Determination of antibacterial activity by the disc diffusion method : Sterile paper discs were loaded with 20 μ L of EM dissolved in dimethyl sulfoxide. The bacterial suspensions were diluted to match the 0.5 McFarland standard scale, and were further diluted to obtain the final inoculum. The MHA was poured into Petri dishes and inoculated with 100 μ L of the suspension containing 1.5×10^8 cfu/mL of bacteria. AM and OX were used as positive control, and the discs treated with 50% DMSO were used as negative controls. The plates were placed in an incubator at 37°C for 24 h. The inhibition zone diameter around each of the discs was measured and recorded at the end of the incubation period.

Determination of minimal inhibitory concentrations (MICs) : The EM and the

two antimicrobial agents were dissolved in MHA with 10% DMSO. Agar dilution method was used to determine the MICs of ampicillin, oxacillin or emodin. All strains suspensions were adjusted to the 0.5 McFarland standards.

Final inoculums were adjusted to the 10⁶ cfu/spot.

주저자 연락처 (Corresponding author) : Young-Seob Lee, E-mail : youngseoblee@korea.kr Tel : 043-871-5566

0-6

Determination of in vitro combinations : The antimicrobial combination assayed included EM plus AM or OX. Serial dilutions of the EM with AM or EM with OM antimicrobial agents were mixed in cation-supplemented MHA. The final bacterial concentration after inoculation was 5×10^6 cfu/mL. The MIC was defined as the lowest concentration of drug alone or in combination inhibiting the visible growth. The in vitro interaction was quantified by determining the fractional inhibitory concentration (FIC). The FIC index was determined using the following formula: FIC index = FICA + FICB = [A]/MICA + [B]/MICB

Results

Table 1. The antimicrobial activity (as inhibition zonediameters) of EM, AM and OX against S aureus strains

Zona of inhibition (mm)									
	Zone of inhibition (mm)								
S.aureus strain -		E	М	AM^{\dagger}	OX				
		10 µg	50 µg	10 µg	1 μg				
MSSA	ATCC	12	19	30	16				
	25923	12	19	30	10				
MRSA	ATCC	26	30	20	\$				
	33591	20	30	20	_				
	DPS1*	15	18	13	-				
	DPS2	18	23	14	7				
	DPS15	21	23	18	_				

Table	2.	The	MICs	of	EM,	AM,	OX
agains	t <i>S</i> .	aureu	s strain	l .			

S.aureus	Strain	MIC (µg/ml)			
s.uureus	Suam	EM	AM	OX	
MSSA	ATCC	25	0.9	1.9	
	25923	23	0.9	1.9	
MRSA	ATCC	25	62.5	1000	
	33591	25	02.5	1000	
	DPS1 [*]	25	31.25	500	
	DPS2	1.56	31.25	1000	
	DPS15	1.56	125	500	

 *† AM resistance ${\leq}28$ mm, OX resistance ${\leq}10$ mm.

* -, absence of inhibition. ㅋㅋ

Courses Stroip			MIC emodin (µg/ml) [†]				
<i>S.a</i>	S.aureus Strain		With AM [§]	Alone	With EM	FICI [‡]	
MSSA	ATCC 25923	25	6.25	0.9	0.22	0.5	
MRSA	ATCC 33591	25	6.25	62.5	15.62	0.5	
Clinical	DPS 1 [*]	25	6.25	31.25	7.81	0.5	
isolates	DPS 2	1.56	0.39	31.25	7.81	0.5	
	DPS 15	1.56	0.39	125	15.31	0.37	

Table 3. Result of the combined effect of EM and AM against S. aureus.

^{*} FICI, Fractional Inhibitory Concentration Index: <0.5, synergy; 0.5-0.75, partial synergy; 0.76-1.0, additive effect; >1.0-4.0, indifference; and >4.0, antagonism (Choi et al., 2008).

[¶] Alone, alone compound.

§ With AM, EM + AM.

Table 4. Result of the combined effect of EM and OX against S. aureus.

S.aureus Strain			FICI [‡]			
		Alone ¶	With OX §	Alone	With EM	FICI
MSSA	ATCC 25923	25	6.25	1.9	0.47	0.5
MRSA	ATCC 33591	25	6.25	1000	250	0.5
Clinical	DPS 1 [*]	25	6.25	500	125	0.5
isolates	DPS 2	1.56	0.39	1000	250	0.5
		I				
	DPS 15	1.56	0.39	500	125	0.5