### P-170

# Isolation and characterization of the PgDOF transcription factor in Platycodon grandiflorum

Department of Crop Science, Chungnam National University Nam II Park, Pham Anh Tuan, Hui Xu and Sang Un Park<sup>\*</sup>

### Objectives

In this paper, we describe the isolation and characterization of *PgDOF* from *P. grandiflorum*. In addition, we investigated the nuclear localization of *PgDOF* using onion epidermal cells and transgenic *Arabidopsis*.

### Materials and Methods

- Total RNA Isolation and cDNA Synthesis
- Isolation of cDNA encoding PgDOF
- Plasmid Construction for Transformation of Arabidopsis
- Quantitative real-time PCR
- Subcellular localization of PgDOF

# Results

The DNA binding with one finger (Dof) domain proteins are plant-specific transcription factors that are encoded by a multi-gene family in higher plants. A member of this gene family, *PgDOF*, was cloned from *Platycodon grandiflorum*. *PgDOF* was 489 bp in length and encoded 162 amino acids. The predicted protein contained 52 amino acids showing homology to the Dof domain and a putative nuclear localization signal near the carboxyl terminus. Alignment of sequences revealed that the *PgDOF* DOF domain showed a 100% match to that of the *Arabidopsis COG1* gene, which has been shown to negatively regulate phytochrome signaling. *PgDOF* was expressed highly in leaves and stems but at low levels in flowers and roots. In addition, *PgDOF* was shown to localize to the nucleus in transient expression assays in onion epidermal cells, with the results confirmed in transgenic *Arabidopsis*.

<sup>\*</sup> Corresponding author: Tel. 042-821-5730, E-mail: supark@cun.ac.kr

This work was supported by the National Research Foundation of Korea Grant, which was funded by the Korean Government (Ministry of Education, Science and Technology (NRF-2010-355-F00013).



**Fig. 1.** *PgDOF* encodes a Dof transcription factor protein. (a) The deduced amino acid sequence of the *PgDOF* gene. The highly conserved Dof domain is underlined, and a predicted nuclear localization signal(PVKRRRS) is shown in bold. The predicted NLS was identified by the WoLFPSORT software program(<u>http://wolfpsort.org/</u>). (b) Multiple amino acids equence alignments of the DOF domains of *PgDOF* and other DOF proteins in other plants.

a MADVHNGHDSPGIKLFGKTITVQVIKDIKDEPNKADEEALEKRP DKI<u>IPCPRCKSMETKFCYFNNYNVNQPRHFCKGCQRYWTAGGAL</u> <u>RNVPVGAGRRK</u>TKPPIGRELAGTFSENSFFDTPGIHQLDFDGDQ VEEWQVAGHGDFHHVF**PVKRRRS**TSSGQSC



**Fig. 2.** Expression levels of *PgDOF* mRNA transcripts relative to that of actin in different organs of *P. grandiflorum.* The values and error bars indicate the mean and standard error, respectively, from 3 independent measurements.



Fig. 3. Nuclear localization of the GFP-PgDOF protein. GFP localization in onion epidermal cells expressing GFP alone (a,b) and GFP:PgDOF (c,d). A close-up view of the nucleus (d ' ) transformed with GFP:PgDOF. plasmids expressing GFP localization in GFP alone (e) and GFP:PgDOF (f) overexpressed in Arabidopsis roots. Propidiumiodide-stained Arabidopsis roots cell wall. Bars:100mm (a - f), 20 mm (d ′ ).

Acknowledgement: This work was supported by the National Research Foundation of Korea Grant, which was funded by the Korean Government (Ministry of Education, Science and Technology (NRF-2010-355-F00013).