Characterization of Expressed Sequence Tags from *Centella asiatica* (L.) Urban Hairy Roots Elicited by Methyl Jasmonate

Ok Tae Kim^{*1}, Yurry Um^{*2}, Young Chang Kim¹, Kyong Hwan Bang¹, Dong Yun Hyun¹, Gum Soog Kim¹, Seon Woo Cha¹, Min Young Kim³, Hyoungseok Lee⁴, Yi Lee²

¹National Institute of Horticultural and Herbal Science, RDA, Eumseong 369–871, South Korea
²Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju 361–763, South Korea
³Jeonnam Agricultural Research and Extension Service, Naju 520–715, South Korea

⁴Polar Bio Center, Korea Polar Research Institute, KORDI, Incheon 406–840, South Korea *Equal contribution

Objectives

Centella asiatica (L.) Urban contains triterpenoid saponins such as centella saponin, asiaticoside, madecassoside and sceffoleoside (Kartnig and Hoffmann-Bohm 1992; Matsuda et al. 2001). To identify the genes involved in biosynthesis, an expressed sequence taqs (ESTs) analysis was performed from *C. asiatica* hairy roots after treatment of methyl jasmonate (MeJA) as an elicitor. We analyzed the gene expression levels of glycosyl transferase (GT) and cytochrome P450 using real-time RT-PCR.

Materials and Methods

 \bigcirc Plant materials

A *C. asiatica* hairy-root culture was generated by infection with *Agrobacterium rhizogenes* strain R1000. Induced hairy roots were cultured on hormone-free half-strength MS medium at 23° C in darkness. After 5 weeks of pre-cultivation, 0.1 mM MeJA was introduced to the medium. \bigcirc Sequencing, assembly and annotation

Poly(A)+ mRNA were isolated and a cDNA library was constructed using Uni-ZAP XR vector (Stratagene). cDNA clones were sequenced with T3 primers for the clones' 5' region analysis. clustered assembled ESTs were and using the Phrap DNA assembly program (http://www.phrap.org). The clustered sequences (contigs) were compared to non-redundant protein databases using BLASTX searches. Functional annotation of putative proteins from the ESTs was also conducted using the Gene Ontology (GO) database (http://www.geneontology.org). ○ Real-time RT-PCR analysis

Total RNA was extracted from *C. asiatica* hairy roots after 0 h, 12 h, 24 h, 48 h, 3 day, 5 day, and 7 day of MeJA treatment. Two μg of total RNA was used for first strand cDNA preparation and the cDNA was subjected to real-time RT-PCR. SYBR Green master mix (Invitrogen, Carlsbad, CA) was used for quantification and β -actin was used as internal control.

Corresponding author : Yi Lee E-mail : leeyi22@cbnu.ac.kr Tel : 043-261-3373

P-54

Results

○ A cDNA library was constructed from MeJA treated *C. asiatica* hairy roots.

○ Sequencing of 4,896 cDNA clones generated 4,358 5' -end high-quality ESTs and grouped to 2,643 clusters.

 \bigcirc A BLASTX analysis showed that 2,068 of these genes were similar to genes present in the NCBI database.

○ A total of 225 genes were most similar to *Hedera helix*.

 \bigcirc Many of GT and cytochrome P450 were found and some of them were induced after 12 hour of MeJA treatment from *C. asiatica* hairy roots

Table 1. The frequent contigs from the C. asiatica hairy root ESTs.

Sequence ID	No. of Seq.	Accession	Description	Identity (%)	E-value	Organism
ROTLCD001_10-B09	225	AAO38031.1	delta12-fatty acid acetylenase	85	1E-145	Hedera helix
ROTLCD001_18-F03	209	AAG23930.1	ELI7.9	91	1E-152	Petroselinum crispum
ROTLCD001_47-E10	105	AAL47574.1	thaumatin-like protein	62	4E-74	Daucus carota
ROTLCD001_49-A04	103	AAF80560.1	omega-6 fatty acid desaturase	63	1E-110	Sesamum indicum
ROTLCD001_08-C02	55	AAM21199.1	pathogenesis-related protein 5-1	85	1E-108	Helianthus annuus
ROTLCD001_46-C01	44	ABG29599.1	gyrase inhibitor	96	3E-49	Escherichia coli
ROTLCD001_07-F11	41	P80889	Ribonuclease 1	70	7E-57	Panax ginseng
ROTLCD001_09-F03	35	ABN03967.1	acidic chitinase	68	2E-92	Gossypium hirsutum
ROTLCD001_15-G06	35	ABY60454.1	putative polyubiquitin	100	2E-83	Adonis aestivalis
ROTLCD001_44-A03	32	CAA10232.1	metallothionein-like protein class II	72	3E-16	Fagus sylvatica
ROTLCD001_04-E02	29	NP_189274.1	GDSL-motif lipase/hydrolase family protein	52	1E-79	Arabidopsis thaliana
ROTLCD001_14-F12	24	ABS00393.1	cytochrome P450 hydroxylase	44	1E-55	Hyoscyamus muticus
ROTLCD001_07-F04	22	BAF80349.1	exo-polygalacturonase	59	2E-88	Daucus carota
ROTLCD001_11-E11	21	AAB50843.1	iEP4	53	3E-74	Daucus carota
ROTLCD001_02-H06	20	ABC01905.1	fructose-bisphosphate aldolase-like protein	91	1E-134	Solanum tuberosum

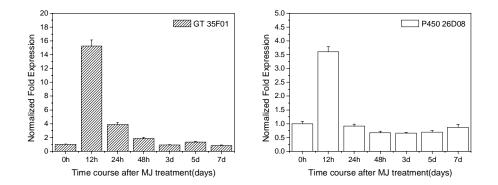


Figure 1. Relative expression patterns of GT 35F01 and cytochrome P450 26D08 genes of *C. asiatica* hairy roots elicited by MeJA. *C. asiatica* hairy roots generated using real-time RT-PCR as described in methods. The fold differences in the level of expression of respective cDNA in different time were presented as the mean of three independent experiments with respective SE.