Magnetocaloric and Critical Properties in Ni_{0.5}Mn_{0.35}Sn_{0.15} Alloys

X.L. Hou¹, P. Zhang^{1,2*}, T. L. Phan², and S. C. Yu²

¹ Institute of Materials Science, Shanghai University, Shanghai 200072, China

²BK21 Physics Program and Department of Physics, Chungbuk National University, Cheongju 361-763, South Korea

Magnetic refrigeration based on the magneto-caloric effect (MCE) is considered as a promising technique applicable to cooling systems. Comparing with conventional gas-compression refrigeration, the magnetic refrigeration shows up many advantages, such as low energy loss and friendly environment. Notable magneto-caloric materials being considered for magnetic refrigeration applications are Gd-based alloys, MnFeP_xAs_{1-x}, Gd₅Si₂Ge₂, La(Fe,Co,Si)₁₃, Ni-Mn-Ga, etc. Among these, an interesting material system has attracted much attention is ferromagnetic Ni-Mn-based Heusler alloys in which Ni and Mn are both inexpensive elements. An additional doping of Sn, Ga or In enhances strongly ΔS_M values, and also leads to many interesting physical phenomena, particularly the inverse MCE. This makes Ni_{0.5}Mn_{0.5}-based materials become promising candidates for magnetic refrigeration applications. To gain more insight into this material system, we have prepared Ni_{0.5}Mn_{0.35}Sn_{0.15} alloy to study the MCE and critical properties.

Figure1: Magnetic entropy change of Ni0.5Mn0.35Sn0.15 alloys

The isothermal magnetization curves close to Curie temperature (T_c) and magnetocaloric effect (MCE) in Ni_{0.5}Mn_{0.35}Sn_{0.15} alloy has been investigated, which is prepared by arc-melting method. The magnetic measurements were performed on SQUID magnetometer with the applied field in the range of 1-5 T. The TC of Ni_{0.5}Mn_{0.35}Sn_{0.15} alloy measured is 313 K. Figure 1 gives the magnetic entropy change DSM curves, which are calculated from isothermal M-H curves for our sample undergoes the second-order phase transition according to arrott plot (not shown). With a maximum field of 5 T, the maximum magnetic entropy change observed are 4.6 J \cdot kg⁻¹K⁻¹. The magnetic entropy change keeps negative from 150 K to 325 K, different with reported

 $Ni_{0.5}Mn_{0.5-x}Sn_x$ (x=0.13, x=0.15) alloy which exhibits so called inverse-MCE ^[1]. The critical behavior analyzed using Arrott-Noakes method (known as modified Arrott plots) turns out to be accordance with mean-field model, reveals a long-range order ferromagnetic interaction are dominant in this kind of Heusler alloy.

References

[1] Thorsten Krenke, et al. Nature Materials, 4 (2005), 450-454.