Magnetic properties in SrRuO₃ and YTiO₃ thin film

C. U. Jung*

Department of Physics, Hankuk University of Foreign Studies, Kyounggi-Do 449-791, KOREA cu-jung@hufs.ac.kr

 $SrRuO_3$ has been used as an oxide electrode for all oxide devices due to its low resistivity and structural similarity. The $SrRuO_3$ thin film grown on $SrTiO_3$ (001) and $DyScO_3$ (110) substrates was reported to have subtle difference in the crystal structure, i. e., tetragonal vs. orthorhombic structure. The magnetic properties of $SrRuO_3$ thin film have not been studied in detail by others. Bulk $YTiO_3$ is a ferromagnetic Mott insulator and thin film was not reported by others.

We first used the advantage of cubic (110) substrate in order to stabilize high quality thin film for perovskite oxides having orthorhombic symmetry. First, we demonstrated a control of the magnetic easy axis in SrRuO₃ thin filmson SrTiO₃ (110) substrates by introducing tunable anisotropic strain.1 But control of the growth direction of SrRuO₃ in this study was rather limited. For example, only orthorhombic a-axis growth could be obtained for SrRuO₃ on SrTiO₃ (110) substrates. Secondly, we succeeded in making thin film of YTiO₃ by using LaAlO₃ (110) substrate while even bulk crystal was very difficult to synthesize due to its unusual Ti³⁺ valence state and large orthorhombic distortion.²

Next, we used buffer layers to control the magnetism of SrRuO₃ thin films. First, we found that miscut STO (001) substrate can stabilize twin-free CaHfO₃ buffer layer and the SrRuO₃ film grown on top of this buffer layer was of high quality and tensile strain, and had an in-plane magnetic easy axis.³ Secondly, we used (Ca,Sr)SnO₃ and CaHfO₃ buffer on SrTiO₃ (110) substrates to change widely the growth orientation as well as the amount of epitaxial strain of SrRuO₃ on top of the sebuffer layers.⁴ We could obtain various film with different growth orientation such as (100)o, (010), (111) o growth as well as with different amount of strain by using the above buffer layers having different amount of orthorhombic distortion. The magnetic properties were found to change systematically with the change of structural distortion of the SrRuO₃ thinfilms.

References

- [1] C. U. Jung, H. Yamada, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 84, 2590 (2004).
- [2] S. C. Chae, Y. J. Chang, S. S. A. Seo and T. W. Noh, D.-W. Kim, and C. U. Jung, Appl. Phys. Lett. 89, 182512 (2006).
- [3] B. W. Lee, C. U. Jung, M. Kawasaki, and Y. Tokura, J. Appl. Phys. 104, 103909 (2008).
- [4] B. W. Lee and C. U. Jung, Appl. Phys. Lett., 96, 102507 (2010).