강자성체의 박막 결정성장 방향에 따른 자화거동 계산

남윤재, 임상호* 고려대학교 나노반도체 공학과

1. 서 론

자성재료가 자기이력을 구현하는데 있어 가장 중요한 요소는 결정자기이방성이라고 할 수 있다. 대표적인 자성재료인 Fe, Co, Ni는 모두 상대적으로 큰 결정자기이방성을 갖고 있고 이들은 그들의 결정자기이방성으로 인해 벌크상태에서 고유의 자화거동을 가지고 있다. 그런데 이들을 박막상태로 성장을 시키게 되면 그 고유의 결정자기이방성은 변하지 않지만 자화거동은 크게 변하게 된다. 이것은 물론 재료가 박막으로 제작하면서 고려해야할 여러가지 변수들, 즉 계면상태, 두께, 성장방법, 결정상태등의 문제도 있겠지만 무엇보다도 가장중요하게 영향을 미치는 것은 형상이방성이라 할 수 있다. 본 연구에서는 이 요소를 고려하여 자성재료의 자화거동 특성을 계산하였고 이를 Futamoto 그룹의 실험결과[1]에 비추어 분석해 보았다.

2. 실험결과

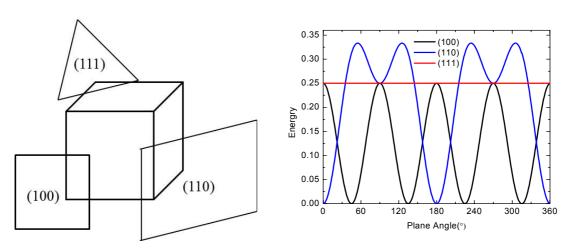


그림 1. 재료의 결정면에 따른 결정자기이방성 에너지

그림 1은 재료의 결정면에 따른 결정자기이방성 에너지를 보여주는 그림이다. 각각의 면에 대해서 결정자기 이방성을 관찰한 결과 재료구조의 결정과 같은 반복구조가 나타남을 알 수 있다. 이로부터 각각의 면이 어떠한 대칭성을 갖는지를 알 수 있는데, 다른 면과는 달리 눈에 띄는 것은 (111)면이라 할 수 있다. 이 면은 결정자기이방성 에너지에 무관함을 보여주고 있다. 하지만 실제로 자기이력곡선을 계산하여 관측한 결과 (111)면 역시 재료결정과 마찬가지로 60° 대칭이 이루어짐을 알 수 있었고 이러한 재료결정구조면에 따른 자화거동은 실험결과와 매우 유사함을 관찰 할 수 있었다.

3. 참고문헌

[1] K. Matsubara, M. Ohtake, K. Tobari, M. Futamoto, Thin Solid Films. (2011) in press