SELECTING OPTIMUM MANAGEMENT PRACTICES IN PRE-CONSTRUCTION PHASE CONSIDERING PROJECT CHARACTERISTICS

Hee-Sung Cha¹, Ki-Hyun Kim² and Young-Jin Ko³

¹Associate Professor, Dept. of Architectural Engineering, Ajou University, Suwon, Korea

² PhD Candidate, Dept. of Architectural Engineering, Ajou University, Suwon, Korea

³ Graduate Student, Dept. of Architectural Engineering, Ajou University, Suwon, Korea

Correspond to hscha@ajou.ac.kr

ABSTRACT: The importance of project performance management as an alternative for solving problems is rising, which are followed by the difficulties of managing construction project in the construction industry. This research classifies and applies the potential improvement made by the construction practitioners. In order to apply influential factors for success on the construction project, the research identifies the relationship between the factors and performance management practices. In addition, in order to predict the results reflecting the project characteristics which are un-improvable by the construction managers in the initial stage of construction, the effect of project characteristics to the identified management practices have been drawn by performance area. Finally, in order to improve the predicted performance, this research provides a framework in setting valid best practices according to the performance areas through a statistical analysis between the best practices and project characteristics through the industry survey.

Keywords: Project Performance Management, Performance Improvement, Pre-Construction Phase, Construction Management Practice, Project characteristics, Performance Difficulty Level

1. INTRODUCTION

With an increase in difficulty of construction project management in the construction industry, the importance of project performance management is being emphasized as an alternative that can solve this problem. Construction companies need to eliminate inefficient aspects of construction projects, understand their current standard and benchmark model projects to establish a rational project management strategy and conduct performance management that can improve project results (Cha et. al. 2008, Yu et al. 2004, Shin et. al. 2005).

The U.S. CII (Construction Industry Institute) has made comparison of performance evaluation of projects and benchmarked individual projects throughout best practices for improvement of results by a project practitioners. In addition, many existing studies on the project success that have an effect on project performance use multidimensional factors and methodologies to present best practices as benchmarking information to improve project performance.

However, although many existing studies have been conducted on the elements that have an effect on the success of a project, their results are failing to receive wide approval from the construction industry. This is because the elements of success are mixed with few independent variables and project-specific variables in relation with project characteristics. In addition, there is few specific tools in matching the best management practice (Chan et al, 2004). Thus, the elements that have an effect on the success of a project are not divided into whether they can be improved according to the efforts of the construction practitioners and are mixed up, making it difficult to effectively apply the elements for after-project management. Also, despite the fact that the difficulty of performance extraction is different according to the different project characteristics, there is no reflection of this aspect.

As a result, construction managers have a tendency to depend on experience when establishing performance management strategies appropriate to the characteristics of each project, and there is the problem of inefficiency when attempting to make strategic decisions on selection and degree of execution for effective benchmarking of best practices to a particular project. This is why domestic project performance management is currently unable to fulfill the function of performance improvement, and is remaining just as an idea of performance evaluation.

Therefore, this study has attempted to make establishment of an effective performance management strategy that reflects the characteristics of a project in the early stage of construction. The effects of project characteristics on results have been predicted, and a method of selecting specialized optimal best practices that can improve the predicted performance has been suggested.

The aim of this study is to predict the effects of the characteristics of a project on performance and present a method to select most optimal best practices that can improve predicted results, to make establishment of an effective performance management strategy that reflect project characteristics in the earlier stage. The process of this study is divided into 1) analysis of previous studies and identification of problems, 2) extraction of elements

for project performance management, 3) design of a project performance area, 4) extraction of a construction practice that affects project performance, 5) presenting an algorithm to select the optimal construction practice.

2. **ELEMENTS** OF PERFORMANCE MANAGEMENT

2.1 Project performance area

The results of the preceding study, "Development of a Field-focused Risk Management Optimization Program through Development of a Construction Project Performance Prediction System" (Cha et. al., 2007) and the results of other domestic and foreign studies were used to define the range of performance as summarized in Table 1, below.

Table 1. Project per	rformance area	
	Definition and method of	
Performance Area	measurement	
Contract	Measured with the cost and time	
	following a conflict. Performance	
management performance	related to project success following	
performance	effective contract management.	
	Measured with the increase rate of	
	the budget in the early stage and the	
Cost management	accuracy of predicted cost.	
performance	Performance related to effectively	
	completing a project within a set	
	budget.	
	Measured with the increase rate of	
	the air planned in the early stage and	
Air parformanca	the accuracy of predicted air.	
Air performance	Performance related to effectively	
	completing the project within the set	
	amount of air.	
	Measured with the rate of materials	
	passing the quality test and cost and	
Quality	frequency of redone work.	
performance	Performance related to effectively	
	materializing the quality required by	
	the client.	
	Measured with the rate of reserves	
	used and the increase of cost due to a	
Risk management	change in design. Performance is	
performance	related to effective management of	
	various risks that can arise during a	
	project.	
	Measured with the rate of accidents	
	in the field, the rate of waste that is	
Safety and	created, and the number of civil	
environment	complaints. It is comprehensive	
performance	performance related to existing	
	safety performance and	
	environmental performance.	
Productivity	Measured as productivity per	
Productivity	employee and laborer.	

The 7 areas as defined in Table 1 were used to measure each type of project performance and apply it to the study.

2.2 Project characteristic factors and construction management practices

This study divided the elements of project success to project characteristics and construction practice according to whether or not improvements are achievable through the efforts of the construction managers.

Table 2.	Construction	management	practices
I unic #	construction	management	practices

Table 2. Collsu	action management practices		
Construction			
management	Definition		
practices			
Establish goal	Setting and sharing of performance goals		
Establish	Degree of cooperation between		
cooperative	participants for successful project		
relationships	operation. (attitudes towards each other)		
Create team	Project operation structure		
Benchmarking	Feedback on similar performance		
	(analysis and level of application)		
X 7 1	Value engineering, review of		
Value	constructability and other degrees of		
engineering	operation (VE operation standard)		
Construction	Planning for start-up, temporary plan,		
Construction	division of work, solution to delay of		
plan	construction (write up construction plan)		
Diala	Awareness, evaluation, establishment		
Risk	and degree of execution of alternative		
management	process		
A word avatam	Incentive, penalty [Clearness of award		
Award system	evaluation standard (specific standard)]		
Change control	Convenience of document management,		
Change control	plan updates		
Quality control	Education, materials auditing, checking		
Quality control	for defects		
Cost process	Comparative analysis of execution in		
Cost, process	comparison to plan (measurement,		
management	analysis, update)		
Materials	Execution of materials management		
management			
Cooperating	Whether there is feedback on evaluation		
Cooperating	of subcontractors (whether there is a tool		
companies	of evaluation and the results are later		
management	reflected to construction)		
Information system	Whether construction is managed		
	through informatization and		
	electronification like PMIS		
	How much cutting-edge technology such		
Application of	as RFID, 3DCAD, ROBOT, GPS		
cutting-edge	(Global Positioning System), PDA, USN		
technology	(Ubiquitous Sensor Network) are applied		
	to the field and used		

Preliminary research was conducted on the elements of project success and whether or not they should be improved were considered to divide them according to project characteristics and construction practice areas, and define each factor. The pools with similar significance level were re-organized, and categories with an upper and lower relationship were given levels and grouped to create preliminary candidate factors. These factors were verified to see whether it was appropriate for the domestic project field through advices from the construction experts, and elements that were defined as the characteristics of their current project and construction practices used were additionally extracted and applied. The finalized set through this process are shown in Tables 2 and 3. These set of factors and definitions were used for the study as elements of performance management.

Table 3. Project characteristic factors

	t characteristic facto	
Field of	Characteristic	Specific fields and
characteristics	factors	definition
		Divided into
		residences,
	Project type	commercial,
	r toject type	industrial, education,
		culture and combined
		facilities.
		Characteristics
	Project scale	defined by standards
		such as contract
		amount, above land
		and below land scale,
		surface area.
		Project contract
		method defined by
		divided design and
	Bidding method	construction orders,
		turn-key, CM order,
General characteristics		etc.
		Amount deciding
endracteristics		method defined by
	Method of	total amount contract,
	deciding contract	contract based on
	amount	quote, actual cost
		calculation contract,
		etc.
		Condition of
		surrounding land such
	Land conditions	as inner city
		constructions, new
		city development, etc.
		Condition of ground
		decided by
	Ground conditions	complexity of foundation and
		difficulty level of construction.
	Characteristics of	Whether the client is
	client structure	a public facility or
		private facility.
Characteristics of participants	Scale of client	Characteristics
	structure	according to scale of
		client structure.
		Index of whether the
	Experience of	client has experience
	client conducting	conducting similar
	similar projects	projects defined as none, 1-2 times, 3

		times or more.	
	Clearness of	How specifically the requirements of the	
	requirements of	client are defined in	
	client	the specs sheet and	
	client	plan.	
		How much aid the	
		designer offers in the	
	Cooperating	early stage of	
	attitude of	construction,	
	designer	including	
	U	constructability	
		review and VE.	
		Number of employees	
	Scale of designing	of designing company	
	company structure	defined as over	
	company surcture	500, 50-500 and	
		under 50 people.	
		Index on experience	
	designer	of designer	
	conducting similar conducting similar		
	projects	projects.	
		Average performance	
	Number of similar according to whether projects conducted the builder has		
	by builder,	experience	
	performance	conducting similar	
		projects.	
	Conditions of	Level of difficulty of	
	system	applied system when	
	system	conducting project.	
		Stability of financial	
System and environment characteristics		market while	
	Financial	conducting project	
	conditions	defined as increase	
		rate of raw materials	
		cost, etc.	
	Social conditions	Ease of supply and	
		demand of labor	
	Social conditions	workers when conducting project.	

3. SELECTION OF A CONSTRUCTION PRACTICE THAT REFLECTS PROJECT CHARACTERISTICS

3.1 System for selection of a construction practice that reflects project characteristics

The ultimate goal of this study is to improve performance through performance management. In order to reach this goal, this study aims to propose the optimal construction practice that reflects project characteristics in the early stage of construction, and improve performance. As examined above, for effective performance management, performance needs to be measured objectively for comparative analysis of the project results with the standard performance of the construction industry, and performance needs to be managed to make improvements possible through benchmarking. In addition, project characteristics that affect project performance and cannot be improved should be reflected, and multidimensional performance management through which construction practices that can be improved and benchmarked is needed. Therefore, this study proposed the optimal construction practice selection system that reflects project characteristics for construction project performance management, as shown in Figure 1.

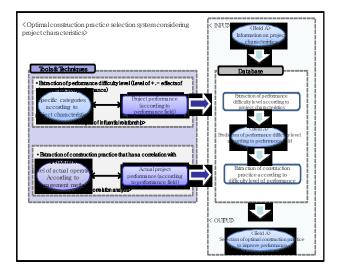


Figure 1. Concept of optimal construction management practice selection

First of all, the relationships between the characteristics of the construction project, construction practices, and project performance were set. The relationship of influence between the project characteristics and performance was clarified first, and then the effects of project characteristics in the early stage on performance were predicted as quantitative performance difficulty level. In addition, the quantitative correlation between construction practice and project performance were clarified and a construction practice that can be benchmarked was presented. Then, when this led to actual information on project characteristics, this would lead to presentation of an optimal construction practice according to prediction of performance difficulty level.

3.2 Management method selection algorithm that reflects project characteristics

Based on the theories presented above, the process shown in Figure 2 was created and applied to select the optimal construction practice. The optimal construction practice is selected by the group of rules that select the best construction practices based on the entered data. The relationship of influence on performance of project characteristics was calculated as performance difficulty level according to the system and ideas presented in 3.1, and the correlation according to performance was analyzed. Based on the analysis results, when information on the project characteristics was provided performance difficulty level is predicted, and construction practices that can be benchmarked for areas that have difficulty with performance are presented.

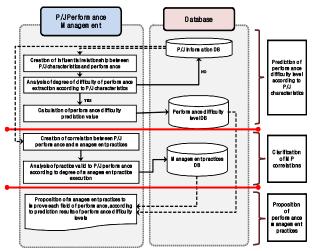


Figure 2. Optimal construction management practice selection algorithm

4. CONCLUSIONS

This study divided project success factors according to whether there could be improved through the management efforts of the construction managers, and applied them as project performance improvement factors by matching the most appropriate performance areas. An algorithm for selecting the best performance management practices was presented. The proposed algorithm assists project practitioners to improve the target project in terms of leveraged performance areas in the early phase. In addition, this research can be used as a foundation for presenting the optimal construction management practice to improve project performance level. Although this study proposes a conceptual algorithm, the data collection would effectively quantify the degree of difficulty in construction project performance. As a quantitative system, the results provide an analytical approach in matching the best management practices based on the relationship between performance and elements of success. It is hoped the results of this study will be strategically used for selection of optimal construction practices needed for project managers to improve their desired project performance.

ACKNOWLEDGEMENT

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (No. 2009-0075733)

REFERENCES

[1] Armstrong, M.& Baron, A. (2004), "Managing performance: performance management in action",

London: Chartered Institute of Personnel and Development.

[2] Abraham, G. L. (2003) "Critical Success Factors for the Construction Industry", Construction Research.

[3] Cha, H, Kim, T (2008) "Developing Measurement System for Key Performance Indicators on Building Construction Projects", Korea Institute of Construction Engineering and Management, Vol.9(4), pp.120-130.

[4] Cha, H (2007) "Optimizing On-site Risk Management Program by Developing Individual Project Analysis System" National Research Foundation of Korea

[5] Chua, D.K.H., Kog, Y.C. & Loh, P.K. (1999), "Critical Success Factros for Different Project Objectives", Journal of Construction Engineering & Management, ASCE, pp.142-150.

[6] Chan, A., Scott, D., & Chan, A. P. L. (2004), "Factors Affecting the Success of a Construction Project", Journal of Construction Engineering and Management, ASCE, January/February, pp,153-155.

[7] Construction Industry Institute(CII) (2001) Bench marking Data Report 2001, CII, Austin, TX.

[8] Evalgelidis. K (1992), "Performanace measured performanace gained", the Treasurer, No. February, pp.45-47.

[9] Shin, Y, Kim, H (2004) "Performance Measurement Techniques and Best Practice in Construction Projects", Architectural Institute of Korea, Vol.20(3), pp.109-116.

[10] Songer, A. D. & Molenaar, K. R. (1997), "Project Characteristics for successful public-sector design-build", Journal of Construction Engineering and Management, ASCE, pp.34-.40.

Vol.5 (5), pp.172-182.

[11] Yu, I, Kim, k, Jung, Y, Chin, S, Kim Y (2004) "A Framework of the Comparable Performance Measurement in the Construction Industry", Korea Institute of Construction Engineering and Management,