Screen printing 법에 의한 Touch screen용 전극 형성기술 개발

A Development on Touch screen electrode fabricated by Screen printing *김광영¹, *김영신², 김동진², 조정대¹,#*남수용³

*K. Y. Kim¹, [#]Y. S. Kim², K. D. Kim², J.D.Jo^{##}S. Y. Nam³ ¹한국기계연구원, ²㈜ FP, ³부경대학교 인쇄정보공학과

Key words: Screen Printing, Touch screen panel, Electrode, Ag paste, oxidation

1. 서론

21세기에 접어들면서 프린팅 전자 소자 산업에 대한 관심이 점점 증폭되고 있다. 프린팅 전자 소자 시장은 디스플레이, 터치패널, RFID, 전지, 유기 트랜지스터 등 다양하며, 패터닝을 할 수 있는 다른 공법에 비해 대면적, 대량생산, 저가격, 친환경, 단순 공정 등의 장점을 가지고 있다. 현재는 상용화 단계에 접어들어 새로운 용도의 저가 전자 소자 제작에 이용되어 그 가능성을 넓혀가고 있지만, 가까운 미래에는 오늘날 사용되고 있는 전자 제품 의 대부분이 프린팅 소자화되어 생산 원가를 획기 적으로 낮추어야 하는 상황이 올 것으로 전망되어 진다[1]. 프린팅 전자 소자 중 최근 각광받고 있는 터치패널은 키보드나 마우스와 같은 입력장치를 사용하지 않고, 화면에 나타난 문자나 특정위치에 사람의 손 또는 물체가 닿으면 그 위치를 파악하여 특정한 기능을 처리하도록 한 패널이다. 터치패널 의 구현 방식에 따라 정전용량 방식, 저항막 방식, 적외선 방식, 초음파 방식이 있으며, 정전용량 방식 과 저항막 방식이 주로 사용되고 있다[2].저항막 방식은 투명전극이 코팅되어 있는 두 장의 기판을 합착시킨 구조로써 손가락이나 펜으로 압력을 가 해 상부와 하부의 전극층이 접촉되면 전기적 신호 가 발생되어 위치를 인지하는 방식이며, 정전용량 방식은 사람의 몸에서 발생하는 정전기를 감지해 구동하는 방식이다.[3]

본 연구에서는 스크린 인쇄에 적합한 저온 경화형 터치패널용 전도성 Ag Paste를 선행연구를 통해개발하였고 인쇄적성 및 Fine Pattern을 위한 레올로지 특성을 고려하여 전도성 Ag Paste를 제조하였다. 그리고 특정한 조건하에 Ag Paste의 산화 및 변색에 대한 내성을 알기 위해 각 제조사의 Ag Paste와

비교 분석을 통해 염수분무 및 고온고습 분위기에 서의 전기전도성과 접착력 및 산화에 대한 내성이 우수한 전극 패턴을 얻는 것을 목표로 하였다.

2. 실험

본 연구에서는 선행연구에 의한 스크린 인쇄에 적합하고 저온에서 경화가능한 전도성 Ag Paste를 레올로지 특성에 고려하여 제조하였다. 본 연구에서 제조된 Ag Paste는 스크린 인쇄를 통해 TFME Film과 Glass에 도막을 형성하였고 NaCl 5% 수용액으로 72hr 염수분무 테스트와 온도 60℃, 습도 90%의 분위기에서 240hr 항온항습 테스트를 진행하여 면저항값(Ω/sq)과 접착력(KS M ISO 2409)의 변화정도를 확인하였고 항목별 산화도를 EDX를 통해확인하였다.

3. 결과

본 연구에서 제조된 전도성 Ag Paste의 레올로지 특성을 Fig. 1에 나타내었다. Fig. 1은 인쇄적성 및 전도성 패턴 물성을 검토하기 위한 전단속도에 따른 점도 그래프로 나타내었다.

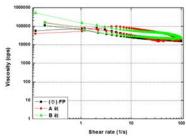


Fig. 1 The Shear Rate Dependence of Viscosity for Ag pastes.

본 연구에서 제조된 전도성 Ag Paste를 이용하여 패턴인쇄를 Fig. 2에 일정한 크기의 면을 전면인쇄후 전도성 및 접착성을 Table 1, Table 2에 산화도를 Fig. 3, Fig 4에 나타내었다.

Fig. 2 The pattern image of screen printing

Table 1. conductive & adhesive property of printing

pattern				
염수분무	인쇄후	테스트후	 접착력	
72hr	면저항($m\Omega$)	면저항(mΩ)		
㈜ FP	2	1	양호	
A社	2	1	양호	
B社	2	2	양호	

Table 2. conductive & adhesive property of printing pattern

	1		
고온고습	인쇄후	테스트후	 접착력
240hr	면저항(mΩ)	면저항(mΩ)	입식력
(주) FP	2	2	양호
A社	2	2	양호
B社	2	2	양호

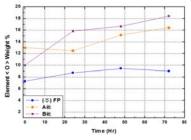


Fig. 3 Time depedence of element O wt% for table 1.

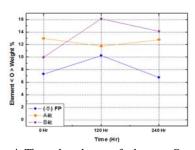


Fig. 4 Time depedence of element O wt% for table 2.

본 연구에서 제조된 Ag Paste를 전면인쇄 후 색상의 변화를 Fig. 5에 나타내었다.

Fig. 5 The pattern image of after test.

4. 결론

본 연구에서 스크린 인쇄법을 이용하여 전도성 패턴 물성에 대해 연구, 검토해 본 결과, 다음과 같은 결론을 얻었다.

- 1) Ag Paste의 점도특성이 10,000~15,000cps일 때 인쇄적성 및 Fine pattern의 형성이 양호하였다.
- 2) Ag Paste의 염수분무 및 고온고습 분위기에서 는 접착력의 변화는 없으나 오히려 전기전도성이 증가하는 경향이 있다.
- 3) Ag Paste의 염수분무 및 고온고습 분위기에서 산화도의 변화가 나타났고 산화도에 따라 변색이 발생하였다. .
- 4) 이러한 색상의 변화는 산화의 초기단계로서 저항과 접착력의 저하는 나타나지 않지만 산화가 계속 진행이 된다면 인쇄된 도막의 탈막과 전기전 도성의 저하되는 원인으로 될 수 있다.

참고문헌

- 1. Gregory P. Crawford, Flexible flat panel displays, John Wiley & Sons Ltd, pp.495~520(2005).
- 권지인, 임순옥, 터치스크린 패널시장 현황 및 국내업체에 대한 시사점, 정보통신정책 20[13], pp2~3(2008).
- 3. 김지수, 오태헌, 남수용, A study on the pattern Characteristics of Photo-sensitive Electrode Paste by Monomer, pp2 (2008)