이성분계 가연성 혼합물의 인화점 추산

하동명, 이명호*, 최진영, 이성진** 세명대학교 보건안전공학과, *세명대학교 대학원 소방방재공학과 **세명대학교 임상병리학과

The Estimation of Flash Point for the Binary Flammable Mixture

Dong-Myeong Ha, Myu7ng-Ho Lee*, Jin-Yeong Choi, Sungjin Lee**
Department of Occupational Health and Safety Engin*Dept. of Fire and
Disaster Prevention *Engineering,Graduate School, Semyung Universityeering,
Semyung University

** Department of Clinical Laboratory Science, Semyung University

1. 서 론

인화점은 가연성 액체의 화재 위험성을 나타내는 지표로서, 가연성 액체의 액면 가까이서 인화할 때 필요한 증기를 발산하는 액체의 최저온도로 정의한다¹⁾.

현재까지 발표된 혼합물질에 대한 대표적인 인화점 연구를 살펴보면, Affens과 Mclaren²⁾은 순수 탄화수소와 다성분계 혼합물의 인화점 예측에 관한 연구를 하였고, Gmehling과 Rassmussen³⁾은 가연성 3성분계에 대해 UNIFAC 모델식을 이용하여 인화점을 계산하였고, Walsham⁴⁾은 Tag식 개방계 장치에 적용되는 인화점 예측 방법을 제시하였다.

본 연구에서는 이성분계 가연성 혼합물인 n-butanol+propionic acid 계의 인화점을 계산하고자 한다. n-Butanol+propionic acid 계의 인화점은 이미 발표된 문헌값⁵⁾을 활용하였다. 활동도 계수를 계산하기 위해 van Laar 식⁶⁾을 이용하였고, van Laar 식의 이성분계파라미터를 최적화시킴으로써 인화점을 계산하였다. 또한 이를 라울의 법칙에 기초한 계산값과 비교•검토하였다.

2. 이 론

2.1 최적화 기법을 활용한 인화점 계산

우선 이성분계 가연성 혼합물이 기-액 상평형 상태에 놓여 있다고 가정한다. 그리고, 다음과 같은 르샤틀리에 법칙을 적용한다.^{4,5)}

$$\sum_{i=1}^{N} \frac{y_i}{LFL_i} = 1 \tag{1}$$

여기서, i 는 혼합물 속의 단일성분 i 를 의미하며, y 는 기상 몰분율을 의미한다. 또한, LFL는 하부인화한계를 의미한다.

기상과 액상이 기-액 상평형 상태에 있다고 가정하고 시스템의 압력 조건이 상압상태이 이면, 다음과 같은 수정된 라울의 법칙을 적용시킬 수 있다.

$$y_i P = x_i P_i^s \gamma_i \tag{2}$$

여기서, P는 기-액 평형 상태에서의 전체압력이며, χ 는 액상 몰분율을 의미하며, χ 는 활동도계수이다.

또한, LFL은 다음과 같이 표현될 수 있다.

$$LFL_i = \frac{P_{i,T_f}^s}{P}. (3)$$

여기서, $P_{i,Tf}^{s}$ 는 i 성분의 인화점에서의 i 성분의 포화 증기압이다.

식 (2)와 식 (3)을 식 (1)에 넣고 정리하면 다음과 같다.

$$\sum_{i=A}^{B} \frac{x_i P_i^s \gamma_i}{P_{i.T_t}^s} = 1 \tag{4}$$

여기서, χ 는 실험값으로부터 구해진다. 그리고, 순수 성분의 압력은 다음과 같은 Antoine 4^6 으로부터 계산할 수 있다.

$$\log P_i^s = A + \frac{B}{C+t} \tag{5}$$

여기서 A, B 및 C 는 Antoine 상수이며 문헌 $^{7)}$ 으로부터 얻을 수 있다. 그리고 t 의 단위는 섭씨온도 (\mathbb{C}) 이다.

식 (4)를 만족하는 혼합물의 인화점을 예측하기 위해서 다음과 같은 목적함수를 설정하였다.

$$F = \frac{1}{N} \sum_{j=1}^{N} ABS(T_{j,exp}^{f} - T_{j,ext}^{f})$$
 (6)

여기서, N은 실험 데이터 갯수를 의미하며, ABS 는 절대값을 나타낸다. 또한, $T_{j,\exp}^f$ 는 기존 문헌값 5 를 사용하였고, $T_{j,eal}^f$ 은 계산된 인화점이다. 또한, 식 (4)의 각 성분의 활동

도 계수는 van Laar 식으로부터 구했다.

van Laar 식의 이성분계 파라미터, A_{12} , A_{21} 의 초기값을 설정하였고, 최적화 기법인 SIMPLEX 방법⁸⁾으로 일정한 증분 씩 초기 파라미터에 더하거나 감해서 그때 마다 식 (4)을 만족하는 하부 인화점을 계산하여 식 (6)의 목적함수(F)를 최소화시키는 이성분계 파라미터 값을 결정하였다. 그 결과를 다음의 "Table 1" 에 제시하였다.

Table 1. The optimized binary parameters of the van Laar equation

Parameters	van Laar		
System	A_{12}	A ₂₁	
n-butanol+ propionic acid	-0.8505	-1.4273	

2.2 라울의 법칙을 이용한 인화점 계산

혼합물이 라울의 법칙을 따른다고 가정하면 다음과 같은 관계식이 성립한다.

$$y_{i}P = x_{i}P^{s}_{i} \tag{7}$$

식 (7)을 식(4)에 넣고 정리하면 다음과 같다.

$$\sum_{i=A}^{B} \frac{x_{i} P_{i}^{s}}{P_{i,T,\epsilon}^{s}} = 1 \tag{8}$$

식 (8)을 만족하는 인화점을 계산하여 "Table 2"에 제시하였다.

3. 결과

Table 2. The experimental data(from Ha et al.[5]) and the calculated values for the n-butanol(x_1)+propionic acid(x_2)system

Mole fraction		Flash point (C)		
X_1	X2	Exp.	Raoult's Law	Opt. Method
1.000	0.000	31.0	_	_
0.949	0.051	31.0	31.49	31.74
0.909	0.091	35.0	31.89	32.43
0.698	0.302	38.0	34.26	37.01
0.507	0.493	40.0	36.93	41.58
0.296	0.704	46.0	40.84	46.00
0.107	0.893	49.0	45.88	48.88
0.000	1.000	50.0	_	_
A.A.D.	_	_	3.12	0.83

최적화 기법을 활용하여 계산된 하부 인화점은 "Table 2"에 제시하였다. 또한, 문헌값과 계산값의 차이는A.A.D.(Absolute Average Deviation)를 활용하였다. A.A.D. 를 비교해 보면, 본 연구의 van Laar 식의 이성분계 파라미터를 최적화시켜 인화점을 계산한 최적화법이라울의 법칙 보다 문헌값을 잘 모사하고 있음을 확인할 수 있다.

4. 결 론

이성분계 가연성 혼합물인 n-butanol+propionic acid 계의 인화점을 계산하기 위해 van Laar 식의 이성분계 파라미터를 최적화시키는 방법을 활용하였다. 그 결과 라울의 법칙 보다 최적화법을 이용한 계산값이 문헌값에 더욱 근사함을 확인하였다.

참 고 문 헌

- 1. E Meyer, "Chemistrty of Hazardous Materials", 2nd ed., Prentice-Hall(1990).
- 2. W.A. Affens. and G.W. Mclaren, "Flammability Properties of Hydrocarbon Solutions in Air", J. of Chem. Eng. Data, Vol. 17, No. 4, pp.482-488(1972).
- 3. J. Gmehling. and P. Rassmussen, "Flash Points of Flammable Liquid Mixtures Using UNIFAC", Ind. Eng. Chem. Fundam., Vol. 21, No. 2, pp. 86-188(1982).
- 4. J.G. Walsham, "Prediction of Flash Points for Solvent Mixtures", Advan. Chem. Ser. Publ. 73 Ser. 124, American Chemical Society, Washington, DC, 56-59(1973).
- 5. D.M. Ha, S.J. Lee, Y.C. Choi and H.J. Oh, "Measurement of Flash Points of Binary Systems by Using Closed Cup Tester", HWAHAK KONGHAK, Vol. 41, No. 2, pp. 186-191(2003).
- 6. C. R. Reid, J. M. Prausnitz and B. E. Poling., "The Properties of Gases and Liquids.", New York: McGraw-Hill(1988).
- 7. J. Gmehing, U. Onken and W. Arlt, "Vapor-Liquid Equilibrium Data Collection", 1,Part1-Part7, DECHEMA(1980).
- 8. J.L. Kuester and J.H. Mize, "Optimization Techniques with Fortran ", McGraw-Hill, New York(1973).