Acknowledgement
Grant : 다중센서 및 협업을 위한 자율 학습 기반 상황인지 기술
Supported by : 한국산업기술평가관리원
최근 교통량이 증가함에 따라 자동차 사고피해도 비례하여 증가하고 있으며, 이로 인해 CCTV 등과 같이 교통사고 예방에 소모되는 비용이 막대하게 지출되고 있다. 단일시점 카메라의 시스템은 객체들의 겹침, 카메라각도에 의한 인식오류 등으로 오차율이 높은 단점이 있다. 이를 보완하기 위해 다중시점의 협업기반 자동 상황인지 시스템을 제안한다. 제안하는 방법은먼저 영상데이터로부터 차량, 사람 등의 객체를 추출하고 이들 객체 쌍의 특징 정보를 계산한다. 이를 바탕으로 각 카메라 센서노드의 규칙기반 시스템을 이용하여 객체간의 사고여부를 가려낸다. 각 센서노드의 사고여부 정보는 메인서버로 수집되고, 수집된 정보는 상위 규칙에 의해 최종 사고 여부가 판단된다. 본 논문에서는 실제 교차로에 설치된세대의 카메라를 이용한 실험을 통해 제안하는 시스템의 성능을 검증하였다.
Grant : 다중센서 및 협업을 위한 자율 학습 기반 상황인지 기술
Supported by : 한국산업기술평가관리원