Inorganic Printable Materials for Printed Electronics: TFT and Photovoltaic Application

  • 발행 : 2011.05.27

초록

Printed electronics based on the direct writing of solution processable functional materials have been of paramount interest and importance. In this talk, the synthesis of printable inorganic functional materials (conductors and semiconductors) for thin-film transistors (TFTs) and photovoltaic devices, device fabrication based on a printing technique, and specific characteristics of devices are presented. For printable conductor materials, Ag ink is designed to achieve the long-term dispersion stability and good adhesion property on a glass substrate, and Cu ink is sophisticatedly formulated to endow the oxidation stability in air and even aqueous solvent system. The both inks were successfully printed onto either polymer or glass substrate, exhibiting the superior conductivity comparable to that of bulk one. In addition, the organic thin-film transistor based on the printed metal source/drain electrode exhibits the electrical performance comparable to that of a transistor based on a vacuum deposited Au electrode. For printable amorphous oxide semiconductors (AOSs), I introduce the noble ways to resolve the critical problems, a high processing temperature above $400^{\circ}C$ and low mobility of AOSs annealed at a low temperature below $400^{\circ}C$. The dependency of TFT performances on the chemical structure of AOSs is compared and contrasted to clarify which factor should be considered to realize the low temperature annealed, high performance AOSs. For photovoltaic application, CI(G)S nanoparticle ink for solution processable high performance solar cells is presented. By overcoming the critical drawbacks of conventional solution processed CI(G)S absorber layers, the device quality dense CI(G)S layer is obtained, affording 7.3% efficiency CI(G)S photovoltaic device.

키워드