벽식구조 축소모형에서의 충격진동 및 방사소음 평가

Floor Impact Sound and Vibration in a Scale Model with Box-frame Type Structure

유승엽†·허재영*·전진용** Seung Yup Yoo, Jae Young Heo and Jin Yong Jeon

1. 서 론

바닥충격음 저감구조에 대한 성능평가는 일반적으로 현장시험 시공에 의한 실험적 방법을 통해 이뤄지고 있다. 현장 시험시공을 통한 실험적 방법은 비용, 소요시간 및 다양한 환경적 영향을 포함하고 있다는 단점을 가지고 있다. 이러한 단점을 보완하기 위하여 축소모형을 이용하거나 축소시편을 활용하여 바닥구조의 구성에 따른 성능을 평가하고자 하는 연구들이 시도되고 있다.

본 연구에서는 벽식구조 실험동에 대해 축소모형의 방법으로 다양한 구성의 바닥판에서의 충격 소음 및 진동 전달특성이 실험적으로 검토되었다.

2. 축소모형 제작 및 측정

본 연구의 모델로 활용된 벽식구조 실험동은 바닥면 적 4.6m×5.1m (23.5m²)의 장방형 슬래브와 200mm 두 께의 벽체로 이뤄져 있다. 각 실의 천장고는 2.65m이다.

축소모형의 축척은 1:10로 하여 시험체의 크기 및 상사법칙을 결정하였다. 부재는 바닥판과 벽체 등으로 구분되어 제작되었으며 시험동 바닥판과 벽 체간의 고정단 경계조건을 재현하기 위해 5cm 간격 으로 볼트를 체결하여 슬래브와 벽체가 일체화될 수 있도록 하였다. 슬래브는 10~20mm 두께의 판재로 제작되었으며 상부 온돌 마감층은 동일한 재질의 10mm 판재를 사용하였다.

그림 1은 제작된 축소모형 및 측정세팅을 나타내고

있다. 바닥판의 진동특성을 살펴보기 위하여 플레이트 상하부 중앙에 가속도계(Endevco, Type 2250-12)를 설치하였다. 또한 수음실 중앙부에는 1/8" 마이크로폰 (GRAS, Type 4138)을 설치하여 음압레벨을 측정하 였다. 충격원은 합성고무 재질의 중공(中空)구(직경 40.5mm, 무게 25g)를 사용하였다. 15cm 높이에서 반복적으로 자유 낙하하여 발생하는 바닥판 및 소음 레벨을 평균하였다. 임팩트 볼은 모달 가진을 하며 24Hz에서 1차 모드가 발생하며 10~400Hz 대역에서 8개의 자유도를 가지는 것으로 알려져 있다(B. Park, JASA, 2010), 본 실험에서 적용한 충격원에서는 이 러한 임팩트볼의 가진 특성을 모사하였다. 측정결과, 200Hz 대역에서 1차 모드가 생기는 나타났으며 400Hz대역까지 일정한 충격력으로 가진되었다. 수음 실에는 흡음재를 설치하여 잔향시간(63~500Hz대역 평균)이 0.5s이하가 되도록 하였다.

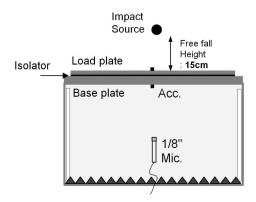


Figure 1 Scheme of scale model of box-frame structure and measurement setup

본 연구에서는 동특성 및 두께가 다른 4 종류의 단일판 및 서로 다른 저감재를 삽입한 4 종류의 복 합판을 설치하여 바닥판의 충격진동(분석구간 2초, 0.5Hz 간격) 및 방사소음(LiFmax)을 측정, 평가하였다.

[†] 한양대학교 건축환경공학과

E-mail: syrus81@gmail.com

Tel: 02-2220-1795, Fax: 02-2220-4794

^{*} 한양대학교 건축환경공학과

^{**} 한양대학교 건축공학과, 교수

3. 바닥판의 진동 및 소음 측정

3.1 단일판 측정결과

단일판으로는 아크릴(10, 20mm)판, MDF(15mm) 그리고 베크라이트(20mm)의 재료가 사용되었다.

(1) 바닥판 진동

측정결과는 그림 2와 같다. 측정된 진동 특성은 계산된 굽힘진동 결과와 유사하였다. 210mm 콘크리트에서의 1차 고유진동수는 32Hz로 이와 가장 유사한 바닥판은 베크라이트(26.5Hz)로 나타났다.

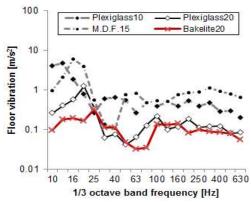


Figure 2 Floor vibrations of single base plates

(2) 충격 방사음

그림 3은 충격음 레벨을 나타내고 있다. 진동특성과 유사한 결과를 보인다. 주파수 대역별 특성은 콘크리트 임팩트볼 측정결과와 베크라이트가 가장 유사하였다.

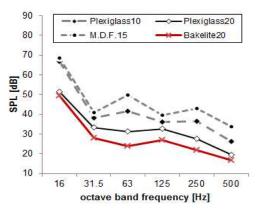


Figure 3 Radiated SPL of single base plates

3.2 복합판 측정결과

베크라이트 판 사이에 삽입 재료는 1~2mm 두께의 EPDM, EPS, EVA, 점탄성제진재(VEDM)가 사용되었다.

(1) 바닥판 진동

그림 4에서와 같이 저주파 대역에서는 VEDM이 125Hz 이상에선 탄성계수가 낮은 EPS가 낮았다.

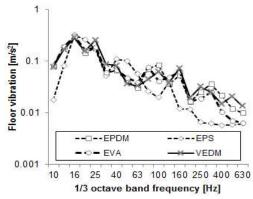


Figure 4 Floor vibrations of multi-layer floor structures

(2) 충격 방사음

그림 5에서 63Hz 대역에서는 VEDM이 125Hz이상에서는 EPS가 가장 낮게 나타났으며 이러한 주파수대역별 저감특성은 현장 측정결과와 같다.

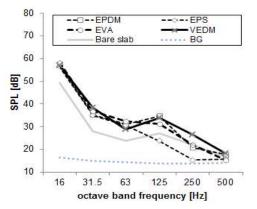


Figure 5 Radiated SPL of multi-layer floor structures

4. 결 론

단일판 및 복합판의 실험결과를 통해 벽식구조 바닥충격음 저감 특성이 축소모형을 통해 재현될 수 있음을 확인하였다. 향후에는 다양한 바닥구조 설계요인들에 대해 검토할 예정이다.

후 기

본 연구는 한국연구재단 "기초연구사업" (과제번호: 2010-0027675) 의 지원으로 수행되었습니다.