내부 음장조건 변화에 따른 오픈 플랜 오피스 음향

Acoustics for open plan office according to the changes of sound field condition

이병권★․이평직*․전진용**

Byung Kwon Lee, Pyoung Jik Lee and Jin Yong Jeon

1. 서 론

사무소 건축물의 평면형태는 대부분 업무의 효율성 및 가변성을 고려하여 개방형 업무공간(오픈 플랜 오피스)으로 설계되며 사용되고 있다. 그러나 오픈 플랜 오피스는 개방형이라는 특성 때문에 인접한워크스테이션에서 발생하는 소음으로 인해 업무효율을 저해할 수 있으며, 프라이버시 침해의 요지도 발생할 수 있다.

이러한 오픈 플랜 오피스에서 스피치 프라이버시의 정도를 측정할 때에는 STI(Speedh Transmission Index)와 SII(Speech Intelligibility Index)등의 지표를 많이 사용하게 되는데 최근에는 이러한 지표의한계점인 공간의 대표특성을 나타낼 수 없는 단점을 극복한 $DL_{2.5}$, r_D , $L_{P.A.5.4m}$ 등을 사용하고 있다.

본 연구에서는 STI 및 최근 사용되는 오픈플랜 오피스의 평가 지표를 사용하여 내부 음장조건을 음 향시뮬레이션을 통해 다양하게 변화시키면서 이에 따른 오픈 플랜 오피스의 음향을 평가하고자 한다.

2. 오픈플랜 오피스의 내부음장 변화요소

2.1 대상 오픈플랜 오피스 개요

연구 대상으로 선정된 오픈플랜 오피스의 개요는 Table 1과 같으며, 최종 마감재료는 책상과 구조체 및 창호를 제외하고는 대부분 흡음 특성을 갖고 있 다. 천장은 suspened ceiling타입으로 흡음텍스로 이 루어져 있으며, 조명은 그릴 모양의 빛 확산구조가 있는 형태로 설치되어 있다. 바닥은 액세스 플로어 타입으로 표면은 카펫타일로 설치되어 있으며, 파티 션의 마감은 천으로 이루어져 있다.

Table 1 Properties of open plan office

	Screen height			
Width	Length	Height	[m]	
38.0	35.0	2.4	1.2	

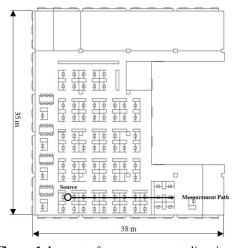


Figure 1 Layout of a measurement line in a office

2.2 내부 음장 변화 요소

내부 음장 변화 요소는 크게 재료의 흡음률, 천장고, 측벽의 효과를 알아보기 위한 오픈플랜 오피스의 가로크기 등으로 한정하였으며, 이에 따른 각 오픈플랜 오피스의 음향 지표를 살펴보았다.

내부 음장 변화의 상세는 다음 Table 2와 같다.

Tel:(02) 2011-8297, Fax:(02) 2011-8068

[†] 교신저자; 대림산업, 한양대학교 건축공학과 E-mail: lbk@daelim.co.kr

^{*} 한양대학교 건축환경공학과

^{**} 한양대학교 건축공학부 교수

Table 2 Changes of sound field condition

구분	변화 범위	
천장고	2.1~3.3m (0.3m 간격)	
파티션 높이	0.9~2.4m (0.3m 간격)	
천장/바닥 흡음률	0.1~0.9 (0.2 간격)	
가로 크기	기존에서 1,2,4,8m 추가	

3. 내부음장 변화에 따른 음향성능

천장고 변화별로는 천장이 높아질수록 $DL_{2,S}$ 값은 줄어드는 것을 볼 수 있으며, $L_{P,A,S,4m}$ 는 유의미한 차이를 보이지 않았다. 그러나, r_D 의 경우 2.7m 천장고까지는 증가하다 천장고가 더 높아질 경우 감소와증가가 반복해서 나타났다.

Table 3 Acoustic parameters according to the changes of ceiling height

천장고	$DL_{2,S}$ [dB]	$L_{P,A,S,4m}$ [dB]	r_{D} [m]
2.1	6.00	54.8	12.59
2.4	5.63	55.1	13.45
2.7	4.98	55.2	14.85
3.0	4.94	55.2	13.92
3.3	4.74	54.9	14.26

파티션의 높이가 높아질수록 $DL_{2,S}$ 값은 증가하였으며, $r_{D,}$ $L_{P,A,S,4m}$ 는 감소하였다. 특히, 각 지표의 감소 및 증가 폭이 다른 음장 변화 요소에 비해 큰 특징을 보였다.

Table 4 Acoustic parameters according to the changes of screen height

파티션 높이	$DL_{2,S}$ [dB]	$L_{P,A,S,4m~[dB]}$	$r_{D [m]}$
0.9	4.61	56.3	17.65
1.2	5.63	55.1	13.45
1.5	6.94	53.8	9.95
1.8	8.38	52.8	6.56
2.1	9.29	51.7	4.40
2.4	9.82	46.7	4.10

천장과 바닥의 평균 흠음률을 변화시키며 각 지

표를 살펴보면 천장의 흠음률 변화가 바닥의 흡음률 변화에 비하여 상대적으로 지표의 변화가 큰 것을 알 수 있다.

Table 5 Acoustic parameters according to the changes of absorption coefficient of materials

<u>ें</u>	$DL_{2,S}$ [dB]		$L_{P,A,S,4m}$ [dB]		r_{D} [m]	
음	Ceili	Floor	Ceili	Floor	Ceili	Floor
륟	ng		ng		ng	
0.1	5.50	5.62	56.0	55.1	13.70	13.45
0.3	5.96	5.73	54.7	54.9	13.85	13.54
0.5	6.33	5.81	53.7	54.6	13.17	13.54
0.7	6.82	5.89	52.8	54.4	12.35	13.52
0.9	7.44	5.95	52.0	54.2	11.17	13.60

건물 전체의 가로크기를 변화시켰을 때 변화폭이 클수록 $DL_{2,S}$ 값이 감소하였으며, $r_{D,L_{P,A,S,4m}}$ 는 건축 요소 변화에 따라 큰 변화가 없었다.

Table 6 Acoustic parameters according to the changes of dimension

가로 변화폭	$DL_{2,S-[dB]}$	$L_{P,A,S,4m~[dB]}$	$r_{D [m]}$
기존	5.63	54.7	13.45
1m	5.46	55.1	13.22
2m	5.30	54.9	13.41
4m	5.20	55.0	13.01
8m	5.01	54.6	12.65

3. 결 론

본 연구는 오픈 플랜 오피스의 내부 음장을 변화 시켰을 때 음향의 변화를 살펴보았다. 천장고, 파티 션높이, 재료의 흡음률, 사무소의 가로크기 등을 변 화시켜 내부 음장 조건을 변화 시켰다.

연구 대상이 된 오픈플랜 오피스의 음장은 천장고가 낮을수록, 파티션의 높이가 높을수록, 바닥보다는 천장의 흡음률이 높을수록, 오피스의 크기가 작을수록 스피치 프라이버시 측면에서 좋은 결과를 보였다.