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I Introduction

Cryogenic detectors using heat gen-
eration below 1 K have become an attrac-
tive alternative because of their out-
standing energy resolution [1, 2, 3.
Significant improvement in gamma spec—
troscopy has been achieved with high reso-
lution transition edge sensors (TESs) for
nuclear material analysis [4]. In alpha
spectroscopy, superior resolution to that of
conventional detectors has been also dem-—
onstrated [5, 6]. Since all the deposited en-
ergy can be converted into thermal energy
by surrounding a radioactive source with
metal foil [7], alpha energy can be meas-
ured without any correction for self-
attenuation. Accompanying electrons, xX-
rays, and/or y-rays are also converted into
thermal energy. Thus measurement of alpha
decay in 4n geometry returns the Q value,
the total decay energy, independent of de-
cay branches without loss of energy and
count, enabling Q spectroscopy.

I Experipental setup

Fig. 1 shows the experimental setup of
the absorber and the sensor together with
a Superconducting Quantum Interference
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Device (SQUID). The sample preparation
procedures were divided into two parts.
The first part was the construction of a 4n
metal absorber. A small amount of a sol-
ution mainly containing “Pu and *“Pu was
dropped onto a piece of gold foil. Foil were
made with thickness of 30 um After the
solution was dried, leaving a deposition of
radionuclides, the foil was folded in order to
cover the radioactive material. It was then
diffusion—-welded at 400 °C for 16 hours in
an argon atmosphere. The resulting thick-
nesses were 60 um. The welded sandwich
was cut to 1.4x0.9 mr'.
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Figure 1. Cross-sectional view of the experiment

The next procedures were to establish an
MMC setup. A hole less than 10 ym in di-
ameter was punched in the middle of the
gold rectangular slab using a high-power
pulse laser. A AuEr disk 40 ym in diame-
ter and 30 pm in height was wedge—bonded
over the hole on one side of the slab. When
the sample was viewed from the other side,
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the hole indicated the position of the Au:Er
sensor. A gradiometric SQUID suscep—
tometer with two 50 pm figure-8-shaped
pickup loops [8] was used to measure the
magnetization change of the paramagnetic
sensor. The rectangular slab was placed
on the SQUID chip (1.55x2.08x0.625 mm') in
such a way as to align the sensor in one
of the pickup loops using a long—fo-
cal-length microscope. A small super-
conducting magnet was placed under the
sample holder to magnetize the erbium
ions in the AuEr sensor. The concen-
tration of enriched '®Er in the AuEr was
800 ppm [9]. The experimental setup was
cooled with a dilution refrigerator.

I Result
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Figure 2. Spectrum of Pu isotopes

We established Q spectroscopy, a novel
method for the study of alpha decay, by
combining 4w detection scheme with a low
temperature microcalorimeter. A 4m metal
absorber guarantees absolute measurement
of radioactivity without energy loss in the
source and absorber. As a clear demon-
stration of Q spectroscopy, The mixed Pu
1sotope source enclosed by thin gold foil
was measured below 100 mK. Its resulting
energy spectrum with 6.3 keV FWHM is
shown in Figure 2.

I Conclusion

The recent results of KRISS show that
Q-spectroscopy using a cryogenic detector is
a useful tool to assay nuclear materials.
Q-spectroscopy is expected to overcome the
drawbacks of conventional detection techni—
ques and to introduce novel techniques in
nuclear metrology.
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