

제 36 회 한국정보처리학회 추계학술발표대회 논문집 제 18 권 제 2 호 (2011. 11)

Automated Scenario Generation for Model Checking
Trampoline Operating System

Nahida Sultana Chowdhury and Yunja Choi

 Dept. of Computer Science and Engineering, Kyungpook National University
e-mail : nahida_uap@yahoo.com

Abstract

A valid scenario generation is essential for model checking software. This paper suggests an automated
scenario generation technique through the analysis of function called-by graphs and call graphs of the program
source code. We provide the verification process including the scenario generation and show application results
on the Trampoline operating system using CBMC as a back-end model checker.

1. Introduction

CBMC [1] is one of bounded C code model checker. It is
capable of verifying almost full ANSI C. It’s a part of the
CPROVER tool suite for the formal verification of both
hardware and software designs. It is capable of verifying
buffer overflows, pointer safety, exceptions and user-
specified assertions. Furthermore, it can check ANSI-C and
C++ for consistency with other languages, such as Verilog.
The advantages are: it is completely automated and supports
full set of ANSI-C.

For embedded system most important concern is safety
properties such as pointers and arrays and violation of assert
condition. To verify the assert condition in ANSI-C code is
the common issue for safety-critical embedded systems,
where CBMC is fully capable to verify the assert condition
whether it’s satisfiable or not. So, currently CBMC is
considered as a promising tool for analyzing embedded
software and improving its quality.

However, the efficiency of model checking depends on the
usage scenario of the application because the dependency
among functions can be a contributing factor for correctly
prove or disprove a given property. In this regard, scenario
generation gains importance which is automated in our work.

This paper discusses about the approach to automate the
scenario generation process using the Trampoline operating
system as an example and CBMC as a model checker for the
verification of assert conditions. In this paper, Section 2
presents the related work, section 3 presents motivation of
this work, Section 4 presents methods and process for the
automated scenario generation. Experimental result is
displayed in Section 5 and Section 6 and Section 7 provide
the limitation and future planning on this development.

2. Related Works

Most popular technique for scenario generation is UML
model-based scenario generation [2, 3]. Most of those
approaches generate abstract test cases directly from the
UML models, and none of them makes the use of the
programs during the scenario generation. In [3], they have
presented an approach about automated scenario generation
based on UML activity diagrams. But in this process they did
not developed the verification process for the generated
scenario.

Few works applies the model-based approaches to the

development of automotive electronics system based on
OSEK/VDX standard. In [4], SmartOSEK platform is to
build a model-based development environment for
automobile applications compliant with OSEK/VDX
specifications. It consists of an operating system and an
integrated development environment that consists of many
convenient tools. In [5], they present model-based approach
to develop automotive electronics software by SmartOSEK.
Also they present simulator-based approach to verify the
system model, which helps the developers to find the design
fault and redesign the system model at early design time.

In our approach, we have applied a different method to
generate scenario. We did make use of the source code
directly for scenario generation because there is no model
available for trampoline OS but only code. Using Understand
Source Code Analysis & Metrics [6], we have extracted the
data about called-by graphs and call graphs of functions
from Trampoline source code. The generated scenario from
called-by graphs and call graphs presents a valid calling
sequence of the functions according to the source code
structure. The CBMC tool is customized in our approach to
make use of the automated scenario generation. Most
incentive point of our work is the whole process is automated.

3. Motivation

OSEK/VDX [7] is an international standard for real-time
operating system used in the field of automotive embedded
software. Trampoline [8], is an open source operating system
written in C and is based on OSEK/VDX.

Correctness is a crucial concern for real-time operating
system, because it affects the safety properties of the entire
system. In embedded system the assert conditions are
concerned for safety-critical properties, where CBMC uses
bounded model checking techniques to verify the violation of
assertions. It implements a technique called Bounded Model
Checking (BMC), where it’s transformed the program and
property into Boolean formula and SAT solver is used to
show whether the formula is satisfiable or not. So if any
violated property is exists than it will return a
counterexample with tracing information, which confirmed
an ideal verification for the safety issues of embedded system.

However, model checking exercises all possible scenarios
for exhaustive verification, which often include invalid
scenarios. Using CBMC under invalid application scenario

- 1342 -

제 36 회 한국정보처리학회 추계학술발표대회 논문집 제 18 권 제 2 호 (2011. 11)

can make a reason for the violation of properties even though
they are valid in fact. For example, the below code presents
tpl_get_proc function which includes two assert conditions.

typedef signed char s8;
typedef unsigned char u8;
typedef s8 tpl_proc_id;
signed char tpl_h_prio = -1;
typedef struct tpl_priority_level;
typedef struct tpl_fifo_state;

tpl_fifo_state tpl_fifo_rw[3] ;
const tpl_priority_level tpl_ready_list[3] ;

static tpl_proc_id tpl_get_proc(void){

/*function body*/
assert((tpl_h_prio >= 0) && (tpl_h_prio < 3));
assert(tpl_fifo_rw[tpl_h_prio].size > 0);
/*function body*/

}
In the above example, the value of tpl_h_prio is initially -

1 so “assert ((tpl_h_prio >= 0) && (tpl_h_prio < 3))” will
be violated if the tpl_get_proc function is called first in a
sequence. This can be occurred by arbitrary choosing
tpl_get_proc function without knowing the valid calling
sequence. If we analyze the source code using the function
call sequence, tpl_put_new_proc function is supposed to be
called before tpl_get_proc . The assert condition is true if the
scenario preserves the valid call sequence. Because
tpl_put_new_proc has modified the value of tpl_h_prio, code
for tpl_put_new_proc function has shown below.

void tpl_put_new_proc(const tpl_proc_id proc_id){
/*function body*/
tpl_h_prio = prio; //prio value is 0 or more
/*function body*/

}
 Therefore, it is important to find out the valid scenario for
more efficient application of model checking techniques to
source code.

4. Scenario Generation

To extract the data about called-by graphs and call graphs
of functions from the Trampoline source code, Understand
Source code analysis & Metrics tool is used in our work.
Understand databases can be accessed by using Perl or
C/C++ API.

The approach is to generate scenario by analyzing called-
by graphs and call graphs of functions used in trampoline
operating system, which helps to create valid scenario. The
work flow diagram of our scenario generation process is
presented in Figure 3, considering only global objects.

4.1 Input Object

In our process input will be a global variable (pseudo code
in figure 5, line 2), which is used in existing assert condition
of trampoline OS. Local or public variables are not
considered because that modifying a value of a local or
public will not have an impact on other functions.

4.2 Finding Function Reference

Function references are required to know for which
functions are modifying or updating the value of this target
object. Here, figure 1 represents an example on Function

references of variable (pseudo code in figure 5, line 3, 4)
using Understand API, which is specifying those functions
who use that particular variable.

(Figure 1) Function Reference of ‘tpl_h_prio’ extracted

using Understand API

4.3 Finding Root Function Reference

Root function references help to get the calling sequence
of a function reference. From a function reference we
subsequently find out all possible root functions who call
these referenced functions. These possible root functions are
known as Root function references (see pseudo code in
figure 5, line 5, 6). Figure 2 represents the called-by graph of
the tpl_schedule_from_running function, a function reference
of tpl_h_prio (in figure 1). In figure 2 the root functions
references are SetEvent, StartOS, ReleaseResource,
periodicTask_function, Schedule. This way we find out root
functions for each function reference.

(Figure 2) Demonstrating Root Function Reference for

tpl_schedule_from_running, using Understand API

(Figure 3) Workflow diagram of the scenario generation

process

Function references
of “tpl_h_prio”

- 1343 -

제 36 회 한국정보처리학회 추계학술발표대회 논문집 제 18 권 제 2 호 (2011. 11)

4.4 To Generate Valid Scenarios

To know a call sequence of function references, it is
important to derive the call sequence of functions, which is
known as a scenario. We traverse from the root using call
graph and find the calling sequence of the function reference
through each root (pseudo code in figure 5, line 9-19).
Afterwards, we randomly choose root functions one by one
to call this function sequence arbitrarily.

For example the call sequence of function references from
ReleaseResource root is “tpl_schedule_from_running ->
tpl_put_preempted_proc -> tpl_get_proc” (using call- graph
of Function ReleaseResource, which is showing in figure 4).

(Figure 4) Demonstrating Calling Sequence from ReleaseResource,

using Understand API

4.5 Imposing Constraints

To make a valid scenario, we also need to consider the
restrictions between two root functions. OSEK/VDX
standard imposes several restrictions on services as shown in
Table 1. We have to consider these constraints to generate
valid scenario (pseudo code in figure 5, line 23-32). In our
experiment, after studying the trampoline OS source code
and the OSEK/VDX standard, we have collected the existing
constraints and handled them manually. For example, in
figure 2, schedule function is not supposed to be called
before ReleaseResource function if GetResource is called
earlier. Because here schedule function is a rescheduling task
(support the 2nd constraint of table 1).

Constraint’s List

1. After TerminateTask, no task will be allowed to call.
2.Without rescheduling Task (i.e. TerminateTask, ChainTask,
WaitEvent, Schedule) other API services can be called between
GetResource and ReleaseResource.
3.EnableAllInterrupts will be allowed if before that
DisableAllInterrupts has called and no API service will be
allowed between this two API services.
4.CancelAlarm will be allowed if before that SetRelAlarm/
SetAbsAlarm has called.

(Table 1) Some of the Constraints are representing here

Now the pseudo code for generating automated scenario of
Trampoline OS is represented in Figure 5.

5. Experiments

This section briefly describes on the verification result
using CBMC and the generated scenarios. From Trampoline
OS we have chosen six variables used in assert conditions,
which are tpl_h_prio, tpl_fifo_rw, tpl_ready_list, tpl_kern,

prio, tpl_locking_depth (Table 2). For tpl_h_prio the
procedure is represented below with details information.

The target variable is, tpl_h_prio, is used in assert
condition 1 and 2 in Table 2. One of the scenarios for
tpl_h_prio is represented in figure 6, which results in a
successful verification by CBMC. Table 3 is presented the
run time properties (Number of generated verification
condition, Size of program expression and the runtime) based
on different assert conditions.

(Figure 5) Pseudo code of the process

(Figure 6) Assert condition of tpl_h_prio has successful

Function References

Root Function References

Randomly chose Root Function

1
2

3

- 1344 -

제 36 회 한국정보처리학회 추계학술발표대회 논문집 제 18 권 제 2 호 (2011. 11)

(Table 2) Assert conditions in Trampoline OS

(Table 3) Run time data in verification time

6. Limitations

There are some limitations in this approach. If a function
is a function pointer type then understand tool incapable to
traverse onward. Figure 9 shows that tpl_signal_handler
function is called by tpl_init_machine and
tpl_init_machine called by StartOS (Figure 7). But
because tpl_init_machine is a function pointer Understand
cannot traverse StartOS node. Such cases are fixed up to
manually.

(Figure 7) Called-by Graph of tpl_signal_handler using

Understand API

 We also need to consider “Unknown” data type variable,
which mean the Understand analysis tool was unable to
determine the type of the variable. It can be global variable
or local variable. If it’s a local variable it will have no effect
with each other, but for a global variable, the modifying
value will have effect to others. So with that possibility we
consider this for verification.

Initially to connect with the Understand database it takes
approximately 2.3sec delay. So, it is unclear at this point
whether our tool would scale well as the size of the database
becomes larger. We may need to consider the performance
improvement.

7. Future Work and Conclusion

We have represented a method for automated valid
scenario generation and verification of trampoline OS. The
important key facts are: (a) Scenarios are generated referring
to the function call sequence (calls and called-by graph); (b)
only valid scenarios are generated; (c) the scenario
generation is performed considering the constraints imposed

by international standard OSEK/VDX; (d) the last and the
most importantly, without deep knowledge about the source
code we can easily generate the valid scenario automatically,
which will provide the opportunity to remove the time
constraint and will allow to easily handle the source code.

In future work we intend to expand this work to make it
more acceptable. With this strategy we are planning to focus
on the below issues:

 The limitation in pointer issue can be solved by
tracing the pointer type manually or by using other
analysis tools with the capability to deal with
pointers

 Need to give more attention on constraints part to
make sure that all are accounted for.

 Also it needs more experiment with other source
code suit to assure its usability and efficiency.

 Lastly, different model checker such as SatAbs,
FeaVer, can be used in the verification process
instead of CBMC. So we can make a comparison
about features and effectiveness between different
model checkers for this approach.

Reference

[1] Clarke, E., Kroening, D., Lerda, F.: A tool for checking
ANSI-C programs. In: K. Jensen, A. Podelski (eds.) Tools
and Algorithms for the Construction and Analysis of
Systems (TACAS 2004). Lecture Notes in Computer
Science, vol. 2988, pp. 168–176. Springer, Berlin (2004)

[2] Latella, D. and Massink, M. On testing and comformance
relations for UML statechart diagram behaviors. Proc.
ACM SIGSOFT Int. Symp. Software Testing and
Analysis, Roma, Italy, July 22–24, 2002. ACM Softw.
Eng. Notes, 27, 144–153.

[3] Sapna P.G. and Hrushikesha Mohanty. Automated
Scenario Generation based on UML Activity Diagrams.
IEEE, 2008.

[4] M. Zhao, Z. Wu, G. Yang, L. Wang, and W. Chen,
"SmartOSEK: A Dependable Platform for Automobile
Electronics," The First International Conference on
Embedded Software and System, vol. Springer-Verlag
GmbH ISSN: 0302-9743, pp. 437, 2004.

[5] Guoqing Yang, Minde Zhao, Lei Wang, Zhaohui Wu.
Model-based Design and Verification of Automotive
Electronics Compliant with OSEK/VDX. Proceedings of
the Second International Conference on Embedded
Software and Systems, 2005.

[6] Understand Source code analysis and Metrics.
http://scitools.com/index.php

[7] OSEK Group. OSEK/VDX Operating System
Specification. http://www.osek-vdx.org.

[8] R.-T. S. group IRCCyN. Trampoline.
http://trampoline.rts-software.org/, 2005.

- 1345 -

