3D레이싱게임 콘텐츠를 위한 6축 모션 시뮬레이터 인터페이스

6-axis Motion Simulator Interface for 3D Racing Game Content

이 상 완*, 박 현 우, 김 기 현**, 송 진 호 이 동 훈. 윤 태 수***

> 동서대학교 일반대학원 영상콘텐츠학과*, 첨단이케이드 게임 지역혁신센터**, 동서대학교 디지털콘텐츠학부***

Lee sang-wan*. Park hyun-woo. Kim gi-hyun**. Song jin-ho. Lee dong-hoon. Yun tae-soo**** Visual Contents Graduated School*, Arcade Game Regional Innovation Center** Digital Content, Dongseo Univ.***

요약

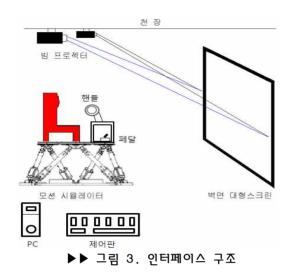
6축 모션시뮬레이터를 기반으로 빔 프로젝터 2대를 이용하여 3D환경을 구축하고, 6축 모션시뮬레이터에 게임용 핸들과 페달을 장 착하여 입력된 신호를 PC와 PCI8134, 8132 모션카드, 제어판을 통해 제어, 분배하여 사용자의 요구에 따라 6축 모션시뮬레이터의 움직임을 표현하는 3D레이싱게임콘텐츠를 위한 인터페이스 개발을 제안한다.

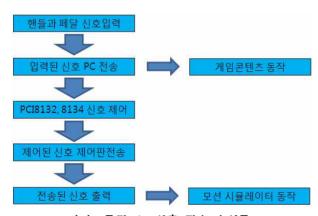
I. 서론

토요일 휴무제에 따른 여가시간의 증가로 인해 여가시 간을 좀 더 재미있고. 다양하게 즐기기 위한 수단들이 많이 등장하고 있다. 그 중에서도 여가시간에 즐길 수 있는 문화 콘텐츠 사업이 빠르게 발전하고 있는 추세다. 문화 콘텐츠는 아케이드게임, 애니메이션, E-book, 체 감형 모션시뮬레이터 기기, 온라인게임, 모바일 및 인터 넷 콘텐츠등 다양한 분야가 있으며, 이러한 문화 콘텐츠 의 시장이 확대되면서 가족, 친구, 연인, 동호회 등과 같 은 개인 및 단체에서 함께 즐길 수 있는 문화 콘텐츠의 필요성이 부각 되고있다[1]. 그 중에서도 체감형 게임기 기 및 차량 시뮬레이터분야의 체감형 콘텐츠와 시스템들 이 많이 개발되고 있다[2,3]. 1970년대 초반부터 개발되 기 시작한 차량 시뮬레이터는 역사는 짧지만 고도의 현 실감을 갖춘 시뮬레이터들이 등장하고 있으며[4], 그 목 적도 다양하다. 차량시뮬레이터는 운전자가 시뮬레이터 에 탑승하게 되면 실제로 운전한다는 느낌을 시뮬레이터 와 스크린을 통해 전달 받을 수 있는 가상현실 장비이다 [5]. 국내의 대표적인 차량 시뮬레이터는 도로교통 안전 관리공단의 RTSADS, 해외의 대표적인 차량 시뮬레이터 는 미국의 NADS 등(그림 1.)이 대표적인 예다. 최근 들 어서는 우리나라 중소기업에서도 모션 시뮬레이터를 생 산 하며, 에이알비전(주)의 시뮬레이션시스템, (주)포디에 이플러스의 킹돔라이더, 동호전자의 맥스라이더 등(그림 2.)이 있다. 이처럼 다양한 시뮬레이터 기기들로 게임콘 텐츠를 제작하려는 사례도 증가하고 있다. 국 내외의 공 공기관이나 기업체 외에도 프랑스, 독일 등 해외의 선진 국에서는 이미 가정용 자동차 모션 시뮬레이터가 존재하 고 있으며, 유튜브와 같은 동영상 검색 사이트에서 시뮬 레이터를 검색하면 2축, 3축, 4축, 6축 모션 시뮬레이터 등을 쉽게 찾아 볼 수 있다. 이만큼 모션 시뮬레이터의

시장이 일반인들에게도 가까워지고 접근이 쉬워졌다. 따 라서 본 논문에서는 3D레이싱게임을 위한 6축 모션 시 뮬레이터의 인터페이스를 개발하여 보다 현실감 넘치는 3D레이싱게임 콘텐츠 인터페이스를 제안한다.

▶▶ 그림 1. RTSADS 와 NADS




▶▶ 그림 2. 에이알비전(주), 포디에이플러스, 동호전자

Ⅱ. 인터페이스 제작

본 논문에서 제안하는 3D레이싱게임 콘텐츠를 위한 6 축 모션 시뮬레이터 인터페이스는 빔 프로젝터 2대를 이 용하여 3D환경을 구축한다. 3D효과와 함께 동역학 (Surge, Sway, Heave, Roll, Pitch, Yaw)적인 움직임 을 표현하는 6축 모션 시뮬레이터와 레이싱게임 콘텐츠 를 컨트롤 하기위한 핸들과 페달을 이용하여 3D레이싱게 임 콘텐츠 인터페이스를 제안하며, 인터페이스 구조는 그림 3.과 같다.

대형스크린에 빔 프로젝터 2대를 이용하여 3D환경을 위한 대형스크린을 설치하고. 6축 모션 시뮬레이터에 레 이싱게임용 핸들과 페달을 부착시킨다. 핸들과 페달의 신호 값과 모션 시뮬레이터의 움직임을 표현하기 위한 PC와 제어판을 연결한다. 신호의 전송 구조는 그림 4.에 서 표현하다.

▶▶ 그림 4. 신호 전송 순서도

핸들과 페달의 아날로그 값은 시리얼 통신을 통하여 PC에 있는 PCI8134, 8132 모션카드로 전송되고 게임콘 텐츠상의 자동차를 동작시킨다. PCI8134, 8132 모션카드 로 전송된 신호는 각 모터 축에 데이터를 분산시킬 제어 판으로 전송되며, 각각의 PCI 모션카드는 8134는 4개의 모터 축, 8132는 2개의 모터 축에 해당하는 모션 데이터 를 제어한다. 제어판으로 전송 된 신호들은 1번부터 6번 까지의 모터 축에 사용자가 입력한 신호를 분배 및 적용 하여 6축 모션 시뮬레이터를 구동 한다 핸들은 핸들의 최대 회전 각도와 시뮬레이터의 최대 회전 각도를 서로 비례시켜 제어하게 된다. 핸들이 왼쪽으로 회전 시 2,4,6번의 다리 축 값을 + 시켜 좌회전 모션을 표현하 고, 오른쪽으로 회전 시 1,3,5번의 다리 축 값을 + 시켜 우회전 모션을 표현한다. 페달은 발로 밟는 순간 시뮬레 이터를 뒤로 밀리도록, 페달에서 발을 때는 순간 앞으로 밀리도록 설정한다. 이렇게 설정된 인터페이스에서 사용 자가 3D용 편광안경을 착용하고 스크린을 보며 직접 레

이싱게임을 하면 사용자의 조작에 의해 모션 시뮬레이터 가 움직이고 사용자는 좀 더 사실적이고 현실감 있는 게 임을 즐기게 된다.

Ⅲ. 결과 및 향후과제

3D용 편광안경을 쓴 사용자는 운전석 및 조수석에 착 석 시 원근감 있는 3D 효과를 느낄 수 있었으며, 핸들과 페달 조작에 따른 모션 시뮬레이터의 모션이 실시간으로 움직였다. 핸들이 꺾이는 각도에 따라 모션 시뮬레이터 도 핸들이 꺾인 각도만큼 비례하여 움직였으며 사용자의 조작에 따라 작동하였다(그림 5).

▶▶ 그림 5. 시뮬레이터와 3D환경

향후 연구과제로 레이싱게임 콘텐츠의 지형에 따른 모 션데이터의 표현을 연구하여 좀 더 사실감 넘치는 게임 콘텐츠용 인터페이스를 연구할 것이다.

본 연구는 교육과학기술부와 한국산업기술진흥원의 지 역혁신인력양성사업으로 수행된 연구결과임.

본 연구는 지식경제부의 지역혁신센터의 연구결과로 수행되었음.

■ 참 고 문 헌 ■

- [1] 서정아, 정무진, 신영기 "롤러코스터 운동감 구현을 위한 보급형 모션의자 개발", 한국시뮬레이션학회 2002년 춘계학술대회 논문집 2002.5. 115~121(7pages)
- [2] 채부경, 김성호 "체감형 게임을 위한 3축 가속도 센서 기반 게임 인터페이스 개발", 한국지능시스템학회 2009년도 춘계학술대회 학술발표논문집 제19권 제1호 2009.4. pp.193~196(4pages)
- [3] 한윤석, 김은석, 이현철, 김범석, 주재홍, 허기택 "실버 세대를 위한 체감형 자전거 게임 콘텐츠 개발", 한국콘 텐츠학회논문지, 제9권 제8호 2009.8. 166~177(12pages)
- [4] 조준희, 이운성, 이동민 "차량 시뮬레이터의 개발 및 응 용 동향", 한국도로학회, 도로, 제10권 제1호(통권 35 호) 2008.3, pp.68~74(7pages)
- [5] 박일경, 김정하, 이운성 "실시간 차량 시뮬레이터의 개 발", 대한전자공학회 학술발표회 논문집(제어계측/로 보틱스/자동화연구회)1998.1, pp.455~459(5pages)