non-polar a-plane GaN growth on r-plane sapphire substrate by MOCVD

<u>Ji-su Son</u>^{1,2}, Kwang-Hyun Baek¹, Ji Hoon Kim¹, Hooyoung Song¹,

Tae-Geun Kim² and Sung-Min Hwang¹

¹Green-energy Research Center, Korea Electronics Technology Institute, Gyeonggi-do 463-816, Korea, ²Department of Electronic Engineering, Korea University, Anam-dong, Seoul 136-713, Korea

We report a high crystalline nonpolar a-plane (11-20) GaN on r-plane (1-102) sapphire substrates with $+0.15^{\circ}$, -0.15° , $+0.2^{\circ}$, -0.2° and $+0.4^{\circ}$ misoriented by metalorganic chemical-vapor deposition (MOCVD). The multi-quantum wells (MQWs) active region is consists of 5 periods the nonpolar a-plane InGaN/GaN (a-InGaN/GaN) on a high quality a-plane GaN (a-GaN) template grown by using the multibuffer layer technique. The full widths at half maximum (FWHMs) of x-ray rocking curve (XRC) obtained from phiscan of the specimen that was grown up to nonpolar a-plane GaN layers with double crystal x-ray diffraction. The FWHM values of $+0.4^{\circ}$ misoriented sapphire substrate were decreased down to 426 arc sec for 0° and 531 arc sec for -90° , respectively. Also, the samples were characterized by photoluminescence (PL).