# 충격공진시험을 이용한 국내 노상토의 함수비 변화에 대한 동결·융해에 따른 강성도 변화 측정

Stiffness change measurement for subgrade soils of changing water contant at freezing and thawing using impact resonance test

## 이재환\*・ 권기철\*\*

Lee, Jaehoan · Kweon, Kichul

# 1. 서 론

우리나라는 겨울철 시베리아기단의 영향으로 한랭한 북서풍이 불기 때문에 지역별 기온차가 매우 크며, 봄 철에는 그 영향이 약해져 기온이 상승한다. 이와 같은 조건에서 국내도로의 동결심도를 고려한 설계는 1970 년대에 시작하였다. 결제개발 5개년 계획 하에 건설을 할 때 건설부 도로조사단의 외국기술자들에 의해서 동 결지수 선도를 발표하였다. 이 자료를 기초로 일본의 데라다가 발표한 동결심도 계산식을 사용하여 동결심도 를 산정하였다.

1980년 30여년간의 기상자료를 토대로 동결지수와 동결지수선도를 발표하였으며 이를 사용하여 데라다공 식으로 동결심도를 산정하다가 1980년대 후반에 IBRD차관 도로 건설시에 배운 미공병단교범의 동결심도 산 정을 도로설계에 사용하기 시작하였다. 또한 동결심도산정식을 국내 실측자료를 이용하여 초기에는 데라다공 식으로 수정했으며, 1990년에는 상관식을 발표하였지만 많은 문제점을 가지고 있다. 국내에서 도로포장두께 를 설계할 때 공사구간에 대한 동결시수를 구하고 도로의 계획고에 의한 수정동결지수를 산정한다. 또한 설 계 교통량에 의한 포장의 소요 구조 두께를 산정한. 포장의 소요구조두께가 동결심도내에 위치하면 동결심도 만큼 동상방지층을 사용한다.

그러나, 도로는 다양한 재료와 단면으로 구성된 구조물이기 때문에 계절적 및 재료적 물성특성 뿐만 아니 라 포장체 각 층의 구조적 적정성 또는 지지력 정도를 파악하는 것이 무엇보다 중요하다. 현재, 기존 동상방 지층 설계법에 따르면, 동상방지층은 포장체의 구조적 적정성과는 무관하게 온도조건에 따른 동결깊이에 따 라 일률적으로 결정되고 있다. 이러한 동결깊이를 포장구조설계에 적용하다 보니 포장설계의 부실 내지는 과 다설계의 우려가 있다.

본 논문에서는 위와 같은 포장구조 설계의 문제점에 대하여 노상토의 동결·융해과정에서 강성도 변화를 시료의 함수비 변화에 따라 측정하고 분석해 보았다. 더 나아가 기온의 변화에 따른 강성도 변화를 동결지수 또는 열전도율과 연계하여 실제 도로설계에서 적용가능성까지 확인해보고자 한다.

# 2. 연구방법

# 2.1 충격공진시험

충격공진시험은 양단자유-추가질량(free-free with added mass) 조건에서의 탄성파전달이론에 근거하여, 시편에 발생시킨 응력파(압축파 또는 전단파)에 대한 공진특성으로부터 미소변형률 영역의 Young계수와 전

<sup>\*</sup> 동의대학교 토목공학과 박사과정 · 051-890-1968(E-mail : dkrehd072@nate.com)

<sup>\*\*</sup> 동의대학교 토목공학과 정교수 · 051-890-1617(E-mail : gckweon@deu.ac.kr)

R

단탄성계수를 결정할 수 있고, 아울러 포아송비도 결정할 수 있는 동적인 시험방법이다.



그림 1. 충격공진시험의 시료 거치 형상

시편은 그림 1에서와 같이 항온챔버에서 시험을 수행해야하는 특성상 항온챔버의 바닥에 수평으로 놓아두 고 그 상태에서 한쪽은 가속도계를 다른한 쪽은 쇠구슬로 신호를 발생시켰다.

충격공진시험 결과의 대표적 일례는 그림 2와 같이 주파수반응곡선을 얻게 되고 이로부터 탄성계수와 감 쇠비를 결정한다. Sun(1993) 및 Vaghela 등(1995)의 연구에 따르면 시료의 길이가 직경의 2배 이상인 경우에 압축파와 전단파에 의한 1차 모드의 공진주파수(f1)를 신뢰성있게 결정할 수 있다.



그림 2. 자유단공진주시험 결과의 대표적 일례

단부가 구속되지 않고, end cap이 없는 경우, 측정된 1차 모드의 공진주파수로부터 압축파속도(Vc)는 식 (1)과 같이 계산된다.

$$V_c = f_1 \cdot \lambda \tag{1}$$

여기서, f1 : 1차 모드 공진주파수

λ : 파장길이 = 시료길이의 2배 (1차모드의 경우)

충격공진시험에서는 구속응력 재하장치, 가진장치 및 감지기 설치를 위해 end cap과 멤브레인, 가속도계, O-ring, 전단파 발생장치가 시료의 양 단부에 추가질량으로 작용하게 된다. 이러한 경계조건을 고려하기 위 하여 식 (2)와 같이 보정계수 β(correction factor)를 적용한다(Vaghela 등, 1995).

$$\mathbf{V} = 2\pi \cdot \mathbf{f}_{\mathrm{r}} \cdot \frac{\mathbf{L}}{\beta} \tag{2}$$

여기서, f<sub>r</sub>: 측정된 1차 모드의 공진주파수 β: 보정계수 V: 시편 내 파의 전파속도 L: 시편의 길이

식 (2)에서 보정계수, β는 식 (3)과 같이 표현된다.

$$\tan\beta = \frac{(\mu_1 + \mu_2)\beta}{\mu_1 \mu_2 \beta^2 - 1} \tag{3}$$

식 (3)에서 압축파 유발시 µ<sub>1</sub>, µ<sub>2</sub>는 식 (4)로, 전단파 유발시 µ<sub>1</sub>, µ<sub>2</sub>는 식 (5)로 정의된다.

$$\mu_1 = \frac{M_1}{M_0} \quad , \quad \mu_2 = \frac{M_2}{M_0} \tag{4}$$

여기서,  $M_0$ : 시편의 질량

 ${f M}_1$  : 자유단 한쪽의 추가 질량  ${f M}_2$  : 또 다른 자유단 쪽의 추가 질량

$$\mu_1 = \frac{I_1}{I_0} \quad , \quad \mu_2 = \frac{I_2}{I_0} \tag{5}$$

여기서,  $I_0$ : 시편의 질량관성모멘트

I1 : 자유단 한쪽의 추가질량체의 질량관성모멘트

 $\mathbf{I}_2$ : 또 다른 자유단 쪽의 추가질량체의 질량관성모멘트

식 (3)에서 µ<sub>1</sub>=0, µ<sub>2</sub>=0인 경우는 자유단-자유단 조건이 되고, µ<sub>2</sub>=∞이면 (고정단) - (자유단 + 추가질량) 조건으로 공진주시험과 동일한 경계조건이 성립한다.

충격공진시험이 수행되는 변형률 크기를 실험적으로 측정하는 것은 불가능하여 시험이 수행되는 정확한 변형률 크기를 알 수 없다. 그러나 충격공진시험과 같은 탄성파시험 기법에서 사용하는 탄성파의 크기는 매 우 작기 때문에 시편이 경험하는 변형률 크기는 선형한계변형률 이하의 매우 작은 변형률 크기 범위에 있다. 한편, 선형한계변형률 이하의 변형률 크기에서는 탄성계수가 일정한, 즉 최대탄성계수를 갖게 된다. 따라서 충격공진시험이 수행되는 변형률 크기는 선형한계 변형률 이하의 어느 크기로 가정하여도 무방하다.

#### 2.2 OMC 변화에 따른 충격공진시험

OMC 변화에 따른 시편의 동결융해동안의 강성도 변화 과정을 측정하기 위하여 추가질량체와 멤브레인,

O-ring을 이용하여 시편에 진공압을 재하하고, 시험의 특성상 동결·융해과정을 측정해야하므로 시편을 그림 3에서와 같이 항온챔버내의 챔버바닥에 수평으로 거치하여 시험을 실시하였다.



그림 3. 시편거치 및 시험 모습

시험장비의 재원으로는 충격하중원은 쇠구슬을, 이때의 반응은 PCB 353B15 가속도계와 PCB 480E09 신호 안정기를 사용하였으며, 신호 획득은 GRAPHTEC WR1000, 신호영역 신호를 주파수영역으로의 전환과 공진 주파수 및 감쇠비의 결정은 Mat Lab 으로 제작한 프로그램을 이용하였다.

아직 시험이 시작하는 단계이므로 한 개의 시료로 국한하여 실시하였으며 00현장의 노상토를 직경이 100mm, 높이는 200mm로 5층 봉다짐으로 시편을 제작하였고(그림 4(a)), 시편조건은 다짐도 95%로 동일한 상태에서 함수비를 OMC와 OMC±2%의 조건을 3가지로 달리하여 시험을 실시하였다. 시편의 양쪽 단부에 석고처리를 하여 단부에 Cap을 설치하였고, 이때 구속응력 재하를 위하여, 그림 4(b)와 같이 멤브레인도 설 치하여 시편을 세팅하였다. 본격적인 시험에 앞서 석고양생을 위하여 구속응력은 최초 진공으로 21Kpa로 재하하여 1시간이상 대기하였다.



(a) 시편성형과정



(b) 가속도계 설치 및 시편 세팅

그림 4. 시험 준비 과정

동결·융해에 따른 충격공진시험을 위하여 항온챔버에서 -10°C에서 10시간을 동결하는 과정에서 정해진 시간 단위로 강성도의 변화를 측정하였고, 10시간 후 +20°C로 10시간동안 융해과정을 정해진 시간 단위로 측정하였다.

## 3. 시험결과

본 시험의 결과는 그림 5와 같이 초기에서의 공진주파수는 OMC+2%의 시편이 가장 강성도가 낮고, OMC-2%의 시편이 강성도가 높게 나타난다. 즉, 함수비가 낮으면 초기 강성도가 높게 나타나는 경향을 나타 난다. 이러한 현상은 간극사이의 수분이 파의 전파를 교란하는 것으로 생각되어 진다. 그림 5에서 기울기는 동결속도를 나타낸다. OMC+2%의 시편의 동결속도가 OMC-2%의 시편의 동결속도 보다 완만한게 나타난다. 즉, 함수비가 높으면 동결속도가 느려지는 특성을 나타내고 있다. 수분이 많으면 수 분이 얼기 위한 잠열의 시간이 늘어나므로 함수비가 높으면 동결속도가 느리게 나타난다고 생각되어 진다. 한 가지 특이한 점은 동결이 완료되었을 때의 강성도는 OMC+2%가 가장 높게 나타나고 OMC-2%에서 가 장 작게 나타내는 동결전의 초기 강성도에서의 특성과 역전되는 현상이 나타났다. 이것은 간극사이의 수분이 동결되면서 간극을 채우면서 파의 전달을 더 용이하게 하는 현상에서 나타났다고 생각된다. 그리고 융해 시 다시 초기와 같은 강성도의 특성을 나타냈다.



# 4. 결 론

본 연구에서는 노상토 시편에 대한 동결·융해에 따른 강성도 변화를 정해진 시간에 따라 측정하였으며, 노상토의 시편을 OMC 즉, 함수비의 변화에 따른 조건을 달리하여 시험을 수행하였다. 그 결과 다음과 같은 결론을 얻을 수 있었다.

- (1) 수분이 간극사이의 파의 전파를 방해하므로 함수비가 낮으면 초기 강성도가 높게 나타나는 경향을 나 타낸다고 생각된다.
- (2) 동결속도의 차이는 간극사이의 수분에 의한 동결시간의 차이라고 생각되며, 함수비가 높은 시편의 동 결속도가 함수비가 낮은 시편의 동결속도보다 느리게 나타났다고 사료된다.
- (3) 간극사이의 수분이 동결되면서 간극을 채우면서 파의 전달을 더 용이하게 하는 현상에서 나타나서 동 결완료 시 강성도는 함수비가 높을수록 크게 나타나는 것으로 생각된다.

본 연구의 결과를 통해서 흙의 동결에서 동결 전의 강성도, 동결속도, 동결 완료 후의 강성도 마지막으로 융해 후의 강성도까지 함수비의 영향이 아주 크게 나타나는 것으로 사료된다. 이런 영향을 입증하기 위해 다 짐도 변화에 따른 추가적인 시험이 필요하다고 생각되어지고, 더 나아가 더 많은 연구가 이루어진다면 동결 지수나 열전도율과 연계한 실제 도로설계에 적용까지 가능하다고 생각되어 진다.



### 감사의 글

본 연구는 한국건설교통기술평가원 "도로 동상방지층의 효용성 검증 및 설치기준 연구"의 과제 일환으로 작 성되었습니다. 본 연구의 지원에 감사드립니다.

#### 참고 문헌

- 1. 건설교통부 (2006), "한국형 포장설계법 개발과 포장성능 개선방안 연구", KPRP-G-06.
- 2. 김동수, 박형춘, 이광명 (1997) "충격반향기법을 이용한 콘크리트 부재의 비파괴 검사", 한국콘크리트학회 논문집, 9권, 2호, pp. 109-119.
- 오세붕, 권기철, 정순용, 김동수 (2000), "미소변형률 및 대변형률 조건의 거동에 대한 비등방경화 탄소성 구성모델" 한국지반공학회, 제16권, 제1호, pp. 65-73.
- 4. Jovicic, V., and Coop, M. R. (1997). "Interpretation of bender element tests." Geotechnique, 47(3), 875.
- Kim D. S., Kweon G. C. and Lee K. H. (1997), "Alternative Method of Determining Resilient Modulus of Compacted Subgrade Soils Using Free-Free Resonant Column Test", Transportation Research Board 1557, pp.62–69.
- Kweon G. C. and Kim Y. R. (2006) "Determination of Asphalt Concrete Complex Modulus with Impact Resonance Test," Transportation Research Record 1970, pp. 151–160.
- 7. Menq, F.Y. Dynamic Properties of Sandy and Gravelly Soils.Ph.D. Dissertation,
- 8. Vaghela, J. G. and Stokoe II, K. H. (1995), "Small-Strain Dynamic Properties of Dry Sand from the Free-Free Resonant Column," Geotechnical Engineering Report GT95-1, Geotechnical Engineering Center, University of Texas at Austin.