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Abstract

Recent work in compressed sensing theory shows that m×n independent and identically distributed sensing matrices

whose entries are drawn independently from certain probability distributions guarantee exact recovery of a sparse signal

with high probability even if m≪n. In particular, it is well understood that the L1 minimization algorithm is able to

recover sparse signals from incomplete measurements. In this paper, we propose a novel sparse signal reconstruction

method that is based on the reweighted L1 minimization via support recovery.

Ⅰ. Introduction

In many data acquisition paradigm, the relationship between

the measurement and the natural signal is described by

   (1)

where x is the signal vector, Φ is the measurement matrix, and y

is the measurement vector (sample). In order to reduce the

necessary sampling rate, a powerful recovery algorithm is

indispensable. In fact, due to the ability achieving reduction of the

necessary sampling rate beyond the limit set by Nyquist, the

compressed sensing (CS) has received much attention in recent

year. CS is a recently introduced novel framework that goes

against the traditional data acquisition paradigm. The central

problem in CS is the recovery of a vector x from its linear

measurements y of the form

     ≤  ≤  (2)

where m is assumed to be much smaller than n. When x is an n

× 1 unknown vector with only k (k < m) nonzero components, a

particular way of solving (1) which has recently generated a large

amount of research is called 1-minimization [1]. It proposes solving

the following problem

min∥∥    (3)

While L0 minimization is non-convex and combinatorial,

1-minimization is convex problem and practical for real

applications. In spite of the substantial reduction in complexity,

accuracy of the recovery algorithm is still a major problem since

there is a difference between the L0 and L1 norms.

Solving under-determined systems by L1 minimization has a

long history. It is at the heart of many numerical algorithms for

approximation, compression, and statistical estimation. Rigorous

results for L1 minimization began to appear in the late-1980’, with

Donoho and Stark [2] and Donoho and Logan [3]. Applications for

1-minimization in statistical estimation began in the mid-1990’

with the introduction of the LASSO and related formulations [4],

also known as Basis Pursuit [5], proposed in compression

applications for extracting the sparsest signal representation from

highly overcomplete frames. Around the same time other signal

processing groups started using L1-minimization for the analysis

of sparse signals [6].

In this paper, we introduce a robust sparse signal

reconstruction method that provides savings in iterations, yet

improves the reconstruction performance. By assigning the bigger

weights to elements of x which are more likely to be zero, the

proposed method improves the recovery accuracy. Owing to the

direct benefit on performance, there have been a number of studies

[7], [10].

Our method is distinct from these approaches. In order to

assign the weight initially, additional support recovery method

based on modified orthogonal matching pursuit (mOMP) is

introduced. Due to the selection of the columns of Φ that is most

strongly correlated with the residual, update of the index set

depends more on the procedure of the least-square problem. At the

least-square problem of the first iteration, we reduce the error of

the signal approximation by exploiting the additional columns that

is largely correlated with the measurement vector y.

This paper is structured as follows. After reviewing the

background of the reweighted L1 minimization algorithm and OMP

in Section II, we will present the method of the mOMP in Section

III. The simulation results are provided in Section IV and we

conclude in Section V.

Ⅱ. Background

The problem is that a system with fewer equations than

unknowns usually has infinitely many solutions and thus, it is

apparently impossible to identify which of these candidate solutions
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is indeed the correct one without some additional information. In

many instances, however, the object we wish to recover is known

to be structured in the sense that it is sparse or compressible. This

means that the unknown object depends upon a smaller number of

unknown parameters.

Under sparsity assumptions, one would want to recover a

signal x, e.g., the coefficient sequence of the signal in the

appropriate basis, by solving the combinatorial optimization

problem

min∥∥    (4)

where x0 = |{i : xi = 0}|. This is of little practical use, however,

since the optimization problem (4) is non-convex and generally

impossible to solve as its solution usually requires an intractable

combinatorial search. A common alternative is to consider the

convex problem

min∥∥    (5)

where ∥∥ 
  



 . Unlike (4), this problem is convex

and is solved efficiently. The programs (4) and (5) differ only in

the choice of objective function, with the latter using an 1 norm as

a proxy for the literal L0 sparsity count.

E. J. Candes considers one such alternative, which aims to help

rectify a key difference between the L1 and L0 norms, namely, the

dependence on magnitude: larger coefficients are penalized more

heavily in the L1 norm than smaller coefficients, unlike the more

democratic penalization of the L0 norm. To address this imbalance,

a weighted formulation of L1 minimization is designed to more

democratically penalize non-zero coefficients. Consider the

weighted L1 minimization problem

min
  



    (6)

where w1, w2, · · · , wn are positive weights. In general, the

weights are inversely proportional to the true signal magnitude,

thus, it is of course impossible to construct the precise weights

without knowing the signal itself. We introduce a reweighted L1

minimization based on the support recovery refers to the problem

of detecting the support set. Although we do not know the original

signal exactly, we are able to assign the weights initially by

detecting the support set.

Ⅲ. The Modified Orthogonal Matching Pursuit

Since the vector x is k-sparse, the vector Φx belongs to one

of L =nCk subspaces spanned by k of the n columns of Φ.

Estimation of the support set is the selection of one of these

subspaces. Mathematically, the ML estimator can be described as

follows. Given a subset J ⊆ {1, 2, · · · , n}, let  denote the

orthogonal projection of the vector y onto the subspace spanned by

the vectors {aj |j ∈ J}. The ML estimate of the support set is

  argmax∥∥ (7)

where |J| denotes the cardinality of J. That is, the ML estimate is

the set of k indices such that the subspace spanned by the

corresponding columns of Φ contain the maximum signal energy of

y. Since the number of subspaces, L, grows exponentially in n and

k, an exhaustive search is computationally infeasible.

In our study, to detect the support set , we employ the mOMP

method. Since x has only k non-zero components, the data vector

y is a linear combination of k columns from Φ. We need to

determine which columns of Φ participate in the measurement

vector y. At each iteration, we choose the column of Φ that is most

strongly correlated with the remaining part of y. Then we subtract

off its contribution to y and iterate on the residual.

The OMP employs the least squares . Since the solution x of

the first iteration has an error, the error is accumulated with the

continuous iteration. In general, the index of the column that has

large correlation is more likely to be support when the x has a fast

decaying distribution. In our modified OMP method, we exploit

these indices as a prior information.

Ⅳ. Simulation Result

Fig. 1 : Sparse signal recovery from m=100 random measurements of a length n=256 signal.

In this section, we observe the performance of the proposed

algorithm over various sparsity. We select a sparse signal x of

length n = 256 The k non-zero spike positions are chosen

randomly. We set m = 100 and sample a random m × n matrix Φ 

with i.i.d. Gaussian entries. As a measure for the performance,

mean square error is used. As shown in Fig. 1, the matching

pursuit (MP), unweighted L1, OMP, and the L1MAGIC are

compared.
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Fig. 2 : Recovery probability of the support of the sparse signal

In Fig. 1, the performance curves for the length n = 256 sparse

signal are provided. The proposed algorithm yields lower mean

square error than the other algorithms over almost entire sparsity

range of interest. When the sparsity (the number of the non-zero

value) is 20, the proposed algorithm gets a 1000 times better than

the unweighted L1. Over the sparsity of 30, the performance

achieved by the proposed algorithm dramatically improves.

Ⅴ. Further Directions

As shown in Fig. 1, we need to analyze the variation of the

performance near the k = m/α. Since the proposed method is

applied to noiseless version of L1 minimization, we need to

compare the recovery performance of noisy version to noiseless.
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