저압선로에 연계된 태양광발전의 운용에 의한 수용가 전압변동 특성 연구

손준호, 지성호, 박현석, 노대석 한국기술교육대학교 e-mail: dsrho@kut.ac.kr

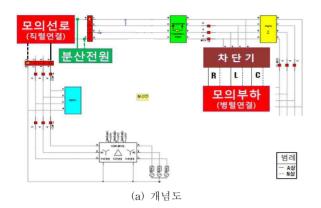
A Study on the Customer Voltage Characteristic Based on the Test Devices for PV Systems

Joonho Son, Seongho Ji, Hyenseok Park, Daeseok Rho Korea University of Technology and Education

요 약

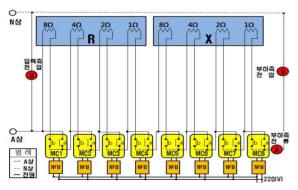
본 논문에서는 배전계통 모의장치와 태양광전원 모의장치, LabVIEW를 이용한 감시제어장치로 구성된 태양광전원 계통연계 시험장치를 제작하여, 태양광전원의 연계용량과 계통의 선로 구성특성, 역율(역율1, 지상/진상역율)의 3가지 Parameter에 대한 태양광전원의 정상상태 운용특성을 모의하였다. 즉, 태양광전원의 연계 운용이 배전계통(수용가)에 미치는 영향과 배전계통이 태양광전원에 미치는 영향을 분석하여, 태양광전원의 계통연계 운용 시에 발생 가능한 기술적인 사항을 검토하였다.

1. 서 론

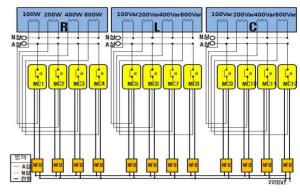

최근 충남 천안 목천의 해비태트 마을에 설치된 30여대의 태양광발전이 저압배전선로에 설치되어 운용되는 동안, 낮에는 태양광 발전량이 상승하여 계통으로 유입하는 역조류가 발생하여 수용가의 전 압이 240V까지 상승하는 과전압 현상이 발생된 사례가 보고되고 있다. 이러한 배경 하에, 본 논문 에서는 배전계통의 운용특성이 태양광전원에 미치 는 영향과 태양광전원의 운용특성이 계통에 미치는 영향을 분석하기 위하여, 배전계통 모의시험장치와 태양광전원 모의시험장치, 감시제어장치로 구성된 태양광전원 계통연계 시험장치를 실 계통의 특성을 살린 축소형으로 제작하였다. 그리고 3가지 Parameter(태양광전원용량, 모의선로/부하, 역율)를 다양하게 변동시켜, 태양광전의 저압선로 연계시의 정상상태 특성을 모의하였다. 특히 LabVIEW용 감 시제어장치를 제작하여, 태양광전원의 연계특성에 대하여 실시간으로 파형을 수집, 분석하여, 정상상 태의 운용특성을 정확하게 평가할 수 있도록 하였 다. 그리고 태양광전원 대응형 전압강하계산 알고 리즘을 제안하여, 시험장치의 실험결과와 이론적인 값을 비교, 분석하여, 본 연구에서 제시한 태양광전

원의 정상상태에 대한 시험결과가 유용함을 확인하 였다.

2. 태양광전원 계통연계 시험장치 제작

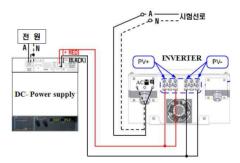

2.1 배전계통 모의시험 장치

배전계통 모의 시험장치는 그림 1과 같이 격리변 압기를 이용하여 3상4선식 380/220V의 저압선로를 구성하고, 선로의 각 구간에는 M/C와 NFB를 이용하여 보호기기와 개폐기를 대용하게 하였다. 모의 선로를 제어하기 위한 제어회로는 그림 2와 같다. 여기서, 모의선로(R+jX)는 임피던스의 조정이 가능하도록 MC를 조합하여, R값과 X값을 1[Ω]단위로 1~15[Ω]을 조정할 수 있는 시험장치를 제작하였다. 또한, 모의선로에 접속되는 부하를 종류별로(저항, 인덕터, 콘덴서) 모의하고 조정할 수 있도록 MC로 조합하여 저항은 100[W]단위로 100~1500[W]를 조절하고, 인덕터와 콘덴서 부하도 100[VAR] 단위로 100~1,500[VAR]로 조절이 가능하도록 제작하였다.



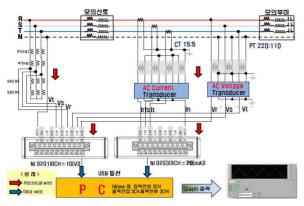
[그림 1] 태양광전원 계통연계 시험장치

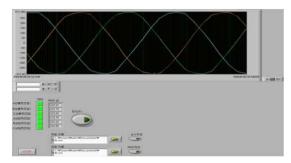
[그림 2] 모의선로 제어회로


또한, 모의선로에 접속되는 부하를 종류별로(저항, 인덕터, 콘덴서) 모의하고 조정할 수 있도록 그림 3 과 같이, MC로 조합하여 저항은 100[W]단위로 100 ~1,500[W] 조정하고, 인덕터와 콘덴서 부하도 100[VAR]단위로 100~1,500[VAR]로 조정이 가능하 도록 제작하였다.

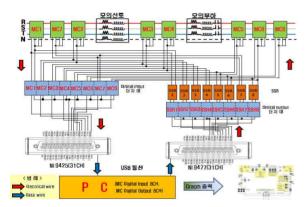
[그림 3] 모의부하 제어회로

2.2 태양광전원 모의시험 장치


태양광전원은 그림 4와 같이 계통연계용 인버터 (3KVA)와 DC전원공급장치 (1,200W)로 구성되며, DC전원공급장치의 출력전류를 가변시켜 태양광전원의 출력량을 조정하도록 하였다. DC 전원공급장치의 출력범위는 전압400[V] × 전류3[A]이며 300~1,200[W]까지 조절이 가능하다. 인버터에서 나온출력은 배전계통 모의장치(그림 1참조)에 연계시켜 전력을 공급한다.


[그림 4] 태양광전원 모의시험 장치 구성도

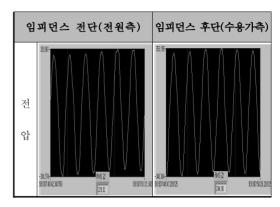
2.3 LabVIEW용 감시제어 장치


아날로그 입력장치인 NI9201과 NI9203을 이용하여 그림 5, 그림 6과 같이 구성하였으며, 실시간 전압, 전류파형을 감시제어 및 분석할 수 있도록 제작하였다. Digital device인 NI9425와 NI9477을 이용하여, 그림 7과 같이 구성하여, PC로 태양광 계통연계시험장치의 8개 MC를 제어(On/Off)할 수 있도록 구성하였다.

[그림 5] LabVIEW의 Analog Input 구성도

[그림 6] LabVIEW의 Analog Input 출력

[그림 7] LabVIEW의 Digital Input과 Output 구성도


3. 계통연계 시험장치에 의한 시뮬레이션 분석

본 연구에서 제작한 태양광전원 계통연계 시험장치를 이용하여, 정상상태의 운용특성을 분석하기 위하여, 3가지 parameter(태양광전원, 모의선로/부하,역율)를 변동시켜 다양한 시뮬레이션을 수행하였다. 여기서는 역률 1일 때의 수용가전압 변동 특성과 지상역률(0.91), 진상역율(0.91)에 대하여 태양광전원이연계된 저압배전선로의 운용특성 즉, 수용가 측의 전압특성을 분석하였다.

(1) 역률 1에 대한 수용가전압 특성

역률이 1인 경우, 시험조건으로 부하=400[W], 선로

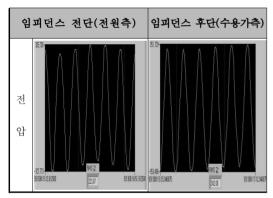
임피던스=1[Ω], 태양광전원=1200[W]에 대하여 수용가 전압변동을 분석하면 그림 8, 표 1과 같다. 이 표에서는 시험장치에 의한 결과 및 이론치(태양광전원대응형 전압강하해석방법)에 의하여 비교, 분석한 결과로서, 오차율이 2% 이내로 큰 문제점이 없음을 확인할 수 있었다.

[그림 8] LabVIEW에 의한 전압측정 결과(역률 1)

[표 1] 수용가전압 분석(역률 1)

이론치	실측치와 이론치의 비교
V(전원측 전압) : 227.8[V]	
P = 400(부하) - 1200(태양	RMS 값
광전원) = -800[W],	측정횟수 평균값
Q=0[VAR],	244.9
$S = \sqrt{P^2 + Q^2} = 800[VA]$	1회 [V]
Cos⊖=P/S=800/800=1	244.8 244.9
Sin⊖=Q/S=0/800=0	[2회 [V] [V]
$Z = R+jX[\Omega],$	245.0
= r*cos⊖+x*sin⊖	[V] 3회 ^{246.0}
= 5*1+2*0=5[Ω]	
P = I * V, -800=I * 227.8	오차 = 이론치 - 실측치
I = -3.51[A]	= 0.45
$\triangle V = I \times Z = -3.51 \times 5 = -17.55[V]$	오차율 = (오차/실측
V(수용가측 전압) = 227.8 -	치)*100 = 0.18%
△V = 245.35[V]	

한편, 그림 9는 부하가 400[W]인 경우, 선로임피던스를 변화(1 - 15[Ω])시키고, 태양광전원의 용량을 0 - 1500[W]를 변화시키며, 수용가 전압변동 특성을 트렌드로 분석한 것이다. 태양광전원이 없을 때는 선로 임피던스가 증가할수록 전압강하가 비례적으로 증가하여 수용가 말단에 저전압이 발생하였고, 태양광전원이 연계되는 경우, 태양광전원 연계용량이 증가할수록 수용가 측 전압이 비례적으로 증가하여 과전압현상이 발생함을 알 수 있었다. 특히 태양광전원의역조류 용량이 증가하고, 선로긍장이 증가하는 경우에는, 태양광전원용 인버터의 전압이 한계치(250[V])초과하여 인버터 내의 OVR 동작을 초래하여, 인버터의 동작정지현상(계통분리)을 발생시킨다는 사실을


알 수 있었다.

[그림 9] 수용가전압 특성(역률 1)

(2) 지상역률에 대한 수용가전압 특성

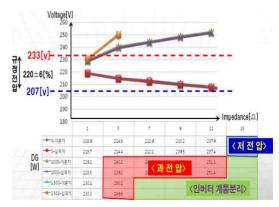
그림 10와 표 2는 지상역률(0.91)인 경우, 시험장치에 의한 실험결과와 이론치에 대하여 비교, 분석한 결과이다.

[그림 10] LabVIEW의 전압측정 결과(지상역률)

[표 2] 수용가전압결과 분석(지상역률)

이론치	실측치와 이론치의 비교
V(전원측 전압) : 227.8[V]	
P = 400(부하) - 1200(태양광전	RMS 값
윈)=-800[W], Q=180[VAR],	측정횟수 평균값
$S = \sqrt{P^2 + Q^2} = 820[VA]$	1회 242.0[
Cos Θ P/S=-800/820=-0.98	V
Sin⊖=Q/S=180/820=0.22	2회 242.3[242 V] [V]
$Z = R+jX[\Omega], 5*(-0.976)$	241.7[
+2* 0.22 =-4.44[<u>Q</u>]	3회 V]
P = I * V, -800= I*223*(-0.976)	오차 = 이론치 - 실측치
I = 3.67[A]	= 2.7
△V = I*Z = 367*(-444) = -1629[V]	오차율 = (오차/실측치)*100
V(수용가측 전압) = 223 -△	= 1.12%
V= 239.3[V]	

그림 11은 저항부하가 400[W]이고 리액터부하가


180[VAR]인 경우(지상역율: 0.91)에 대하여, 선로임 피던스를 변화(1 - 15[Ω])시키고, 태양광전원의 용량을 0 - 1500[W]를 변화시키며, 수용가 전압변동특성을 트렌드로 나타낸 것이다. 유도리액턴스에 의한 전압강하분이 역률 1인 경우보다 증가하여 선로의전압강하분에 반영되어 수용가 측의 전압에 영향을미침을 알 수 있었다. 즉, 역율 변동에 따라 수용가측 전압이 245V에서 239V로 변동되어, 역율이 계통의 전압품질[저전압/과전압]에 큰 영향을 미침을 확인하였다.

[그림 11] 지상역률에 대한 수용가전압 특성

(3) 진상역률에 대한 수용가전압특성

그림 12는 저항부하가 400[W]이고 콘덴서부하가 180[VAR]인 경우(진상역율: 0.91)에 대하여, 선로임 피던스를 변화(1 - 15[\Omega])시키고, 태양광전원의 용량을 0 - 1500[W]를 변화시키며, 수용가 전압변동특성을 트렌드로 분석한 것이다. 용량성 리액턴스부하에 의하여 전압상승분(페란티효과)이 증가하여 선로의 전압강하분에 반영되어 수용가 측의 전압에 영향을 미침을 알 수 있었다. 즉, 지상역율 시의 수용가측 전압(239V)에 비하여 244V로 상승되어, 역율이계통의 전압품질[저전압/과전압]에 중대한 영향을 미침을 확인하였다.

[그림 12] 진상역률에 대한 수용가전압 특성

4. 결 론

본 논문에서는 태양광전원 계통연계 시험장치를 제작하여, 3가지 Parameter(역률, 모의선로/부하, 태양광전원 용량)를 변동시켜, 태양광전원의 정상상태 특성즉, 수용가 측 전압특성을 분헉하였다. 주요 연구결과를 요약하면 다음과 같다.

- (1) 태양광전원의 연계용량이 증가할수록 수용가 측 전압이 비례적으로 증가하여 과전압현상이 발생함을 알 수 있었고, 극단적인 경우에는 태양광전원용 인버터 전압이 한계치(250[V]) 초과하여 인버터 내의 OVR 동작을 초래하여, 인버터의 동작정지현상(계통분리)을 발생시킨다는 사실을 확인할 수 있었다.
- (2) 지상역률일 때는 유도리액턴스에 의한 전압강하분이 역률 1인 경우보다 증가하여, 선로의 전압강하분에 반영되어 수용가 측의 전압에 영향을 미침을 알 수 있었다. 즉, 역율 1인 경우의 수용가 측 전압(245V)보다 더 작은 239V로 감소하여, 역율이 계통의 전압품질[저전압/과전압]에 큰 영향을 미침을 확인하였다.
- (3) 진상역율인 경우에는 용량성 리액턴스부하에 의하여 전압상승분이 증가하여, 선로의 전압상 승분에 반영되어 수용가 측의 전압에 영향을 미침을 알 수 있었다. 즉, 지상역율 시의 수용가 측 전압(239V)에 비하여 244V로 상승되어, 역율이 중대한 요소임을 확인하였다.
- (4) 선로의 길이(임피던스)와, 부하크기, 태양광전원 의 용량에 따른 수용가의 전압특성을 해석하여 태양광전원의 한계 도입용량과 도입 위치 등에 대한 기술적인 사항을 구체적으로 검토하였다. 또한 실계통에서 발생한 과전압의 문제점을 실 험에 의한 방법과 이론적인 방법에 의하여 검 증할 수 있었다.

참고문헌

- [1] H. Soi, H. Yakabe, H. Kakimoto, T. Hayashi & M. Kanori, "Development of High Voltage Distribution Line Management System", IEEJP & Society, No.32 (1995)
- [2] James J. Burke, "Power Distribution Engineering", Dekker, Inc. pp. 320–348 (1994)

- [3] Chanhyeok Kim, Osung Park, Beomtae Lee,r, Daeseok Rho,, IEEE "Optimal Algorithms for Voltage Management in Distribution Systems Interconnected with New Dispersed Sources" IEEE T&D Asia 2009
- [4] 송길영, "최신 송배전공학", 동일출판사
- [5] "분산전원 계통연계가이드라인", JEC 4201, 일 본, 2002.4
- [6] EPRI, " Electricity Technology Road Map", 2003