데이져 드릴링을 이용한 TSV **형성 및 고속** Cu-filling High speed Cu-filling and TSV formation by Laser drilling *#김정오¹, 신동식¹, 서정¹, 이왕구², 경제될²

*#J. O. Kim¹(jokim@kimm.re.kr), D. S. Shin¹, J. Suh¹, W. K Lee², J. P. Jung² ¹한국기계연구원, ²서울시립대학교

Key words : Laser drilling, TSV, DRIE, Silicon, Picosecond Laser

1. 서문

TSV 공정을 위해 실리콘 웨이퍼위에 비아홀를 형성하여야 하는데 이를 형성하는 방법에는 레이 저를 이용한 드릴링 방법과 DRIE를 이용하는 방법 으로 고려되고 있다.¹⁾

DRIE공정은 기존의 레이저 가공공정에서 불가 능하였던 직경 10,4m급 이하의 홀을 가공하는데 유용하게 적용이 가능하여 10,4m 이하의 비아흘 가공시장을 선점하고 있다.²¹ DRIE공정은 금속층 가공의 한계, 대면적 가공의 어려움, 낮은 깊이 균일도, 리소그래피 공정으로 인한 공정지연, 독성 가스사용으로 인한 환경오염 그리고 플라즈마로 인한 회로의 손상 등 한계가 있어 이에 대한 대체공 정이 필요하다. 이에 비해 레이저 가공공정은 금속 층의 가공이 가능하며 고속 가공 공정이며 대면적 에 유리하다. 또한 웨이퍼의 가장자리와 중간의 깊이 차이가 없으며 리소그래피가 없는 장점이 있다.

한편, 비아홀 내 전도성 충진물질로는 비용적인 측면과 전기전도를 고려하여 Cu가 주로 쓰이고 있다. Cu를 비아홀 내에 충진 하기 위해 전해도금법 과 무전해도금법 을 사용하고 있으나, 일반적으로 전해도금의 속도가 무전해도금의 속도 보다 빠르 기 때문에 실제 충진 방법으로는 전해도금법이 주로 사용되고 있다.³⁾

따라서 본 논문에서는 3차원 패키징 기술 개발을 위해 실리콘 웨이퍼에 레이저를 이용하여 비아흘 을 형성하고 그 내부를 Cu를 전해도금법으로 충진 하는 연구를 수행하였다.

2. 실험방법

레이저 드릴링의 방법으로 나노초 레이저와 피 코초 레이저를 사용하여 웨이퍼상의 비아홀 형성 을 하기 위한 최적의 레이저 조건을 찾는 연구를 진행하였다. 비아홀을 형성 후에 절연층 형성을 위해 HDP(High Density Plasma) CVD를 이용하여 SiO₂를 1µm 증착하였다. 여기서, HDP CVD란 PECVD의 일종으로 1개의 generator가 추가로 RF power를 공급하기 때문에 더 높은 밀도의 플라즈마 가 형성되는 방법이다. 이후 sputtering을 이용하여 adhesion층(접합층)으로 Ti를 0.3µm, seed층으로 Cu 를 0.5µm로 증착하였다. 증착전 1분간의 pre-start를 통해 타겟의 이물질과 산화막을 제거한 후 wafer를 load하여 공정을 진행 하였으며, 앞서 제조한 Si-wafer상의 비아홀(seed층 ; Ti/Cu)에 periodic pulse reverse current 의 전류 파형으로 비아흘 내부 에 1시간 30분간 Cu충전을 실시하였다.

3. 실험결과 및 고찰

피코초 및 나노초 레이저로 비아홀을 가공하였으며, 가공조건은 피코초 레이저의 경우 Pulse duration: 15ps, Pulse energy: 2μJ, Pulse cycle : 5times 및 Input energy : 10μJ의 조건 그리고 나노초 레이 저의 경우 Pulse duration: 110ns, Pulse energy: 20μJ, Pulse cycle : 10times 및 Input energy : 200μJ이다. 나노초 레이저의 경우 200μJ의 높은 에너지가 주입된 반면 피코초 레이저에서는 이에 비해 5%에 해당하는 낮은 에너지의 주입만으로 비아흘 가공 이 가능하였다. 즉, 비열적 레이저 가공이 가능하였 고 상대적으로 높은 에너지가 주입된 나노초 레이 저 시편의 경우 열적영향으로 인하여 용융층이 형성됨을 알 수 있었다.

Table 1은 SiO2층의 HDP CVD 증착조건을 Table 2는 Ti와 Cu의 sputtering 증착조건을 각각 나타낸 다.

한국정밀공학회 2010년도 추계학술대회논문집

Table 1 SiO2 HDP CVD Process condition

SiO2 HDP CVD deposition			
Gas flow (flow late)	SiH4 : O2 : Ar (5:9:10)		
Plasma	SiH4/O2/Ar mixed gas plasma		
Deposition speed per sec	10Å/sec		
Substrate temperature	250 °C		
Elapsed time (for 1µm)	1000sec (16min 40sec)		

Table 2 Ti/Cu sputtering Process Condition

	Ti	Cu	
Gas flow (flow late)	Ar (50ccm)		
Plasma	Ar plasma		
Deposition speed per sec	4Å/sec	21Å/sec	13Å/sec
Elapsed time	750sec	238sec	384sec
(11:0.3µm/Au:0.5µm)			
Chamber temperature	20~30 °C		
DC power exerted	1000W		

Fig.1은 PPR plating method를 나타낸 모식도이 다. 앞서 제조한 Si-wafer상의 비아홀에 periodic pulse reverse current의 전류 파형으로 비아홀 내부 에 Cu충전을 실시하였고, 그 단면사진을 Fig. 2에 나타내었다. Periodic pulse reverse 전류 파형은 cathodic current와 anodic current를 교대로 걸어주는 것에 current off을 추가로 걸어 주는 방법으로 pulse 전류 파형에 비해 홀 개구부 모서리의 전류 집중 효과를 훨씬 완화시킬 수 있는 방법이다.

Fig. 2 pulse-reverse plating

4. 콜론

본 논문에서는 피코초 레이저는 TSV공정에 있 어 한계에 다다르기 시작한 나노초 레이저에 비하 여 적은 에너지로서 깊은 가공이 가능하며, 열적영 향이 적으면서 미세한 선폭의 가공에 적합하다는 결론을 얻을 수 있었다. 또한 TSV기술 중 레이저를 이용하여 실리콘 웨이퍼 내부에 20µm의 비아홀을 형성하여 Pulse, Pulse-Reverse 전류를 통해 Cu를 충진한 결과 비아흘 깊이의 약 50%정도 급속충진 을 하였지만, 도금전 전처리 및 도금공정 개선으로 100% 충진할수 있을것으로 사료되고 계속 연구를 진행할 것이다.

후기

본 연구는 지경부 산업융합원천"차세대 레이저 기반 초고속 초정밀 가공시스템 개발"과 산업기술 연구회의 "차세대 반도체 MCP 핵심기술 개발사 업"의 지원에 의한 것임.

참고문헌

- Jesus N. Calata, Jhon G Bai, Xingsheng Liu, Sihua Wen and Guo-Quan Lu, August 2000, "Three-dimensional Packaging for Power Semiconductor Packaging for Power Semiconductor Device and Modules", IEEE transactions on advanced packaging, Vol. 28, No. 3, pp. 404~412
- Alcatel Micro Machining Systems, http://www.alcatelmicromachining.com
- E.Jung, A. Ostmann, P. Ramm, J. Wolf, M. Toepper, M. Wiemer, Through Silicon Vias as Enablers for 3D Systems, Dans Symposium on Design, Test, Intergration and Packaging of MEMS/MIEMS - DTIP 2008, Nice : France (2008)