리브 구조에 따른 공작기계 칼럼의 열특성 평가

Thermal Characteristic Estimation of Machine Tool Column with Rib Structure

^{*#}김양진¹

^{*#}Y. J. Kim(yangjin@kimm.re.kr)¹ ¹한국기계연구원 초정밀기계시스템연구실

Key words : Machine tool, Column, Rib structure, Thermal deformation, Maximum-minimum temperature variation

1. 서론

최신의 공작기계는 초고속 주축의 등장으로 모터 및 주축으로부터의 열이 칼럼에 가해지고 있다. 아래 그림은 공작기계(범용 수동 선반) 전체 에 가해지는 열량을 정량화하여 나타내고 있으며¹, NC 머시닝센터에 적용하면, 전체 열량의 65% 이상 이 칼럼에 가해지고 있다고 할 수 있다.

이와 같은 칼럼에 가해지는 열량에 의한 열변형 을 최소화하기 위한 연구가 예로부터 많이 이행되 어져 왔지만², 지금까지의 공작기계 열변형에 의한 대책은 체계적이라고 할 수 없으며, 취약 부분의 열변형을 측정하는 정도에 그치고 있다.

또한 구조물의 중량강성비를 크게 하기 위한 대책으로 다용되고 있는 다양한 칼럼의 리브 구조 에 따른 열변형은 더욱 예측하기가 어려우며, 이는 실제 공작기계 설계자들이 정/동/열변형을 고려하 여 설계할 때에 큰 장애가 되고 있다.

이에 본 연구에서는 리브 구조에 따라 칼럼의 열적 특성을 유한요소해석을 이용하여 평가하는 것을 목적으로 공작기계 실제 설계자들에게 칼럼 을 설계할 때의 지침을 제시하는 것을 최종 목표로 한다.

2. 공작기계 칼럼에 가해지는 열적 경계 조건

공작기계 칼럼에 가해지는 열적 경계 조건으로 는 모터 및 주축으로부터의 열유속 경계 조건과 칼 럼의 높이에 따라 다르게 존재하는 열전달 경계 조 건, 그리고 임의의 장소에서 발생하는 열복사에 의 한 경계 조건 등이 있다. 열전달 경계 조건으로서 칼 럼을 상부, 중부, 하부로 나누어 대류 온도가 다르다 고 설정하였다.

본 연구에서는 각 경계 조건 별로 별개의 FEM 해 석을 실행하여 칼럼 리브 모델에 따른 평가 항목을 설정, 칼럼의 리브 모델별로 평가 및 비교를 실행하 였다.

3. 모델의 설정 및 열적 특성 평가 항목

본 연구에서는 가장 기본적인 수직형 머시닝 센터의 칼럼을 해석 대상으로 선정하였으며, 해석 에 이용한 칼럼 리브 구조물은 아래 그림과 같다. A 모델은 크로스 리브를 사용한 모델이며, B 모델은 전면 벽에 리브를 배치하여 이중벽 구조의 모델, C 모델은 보강대를 설치한 모델이며, D 모델 은 좌우 대칭형의 열 밸런스를 지니도록 한 더블 칼럼 모델이다.

- 칼럼 리브 모델을 평가할 항목은 다음과 같다. 1. 주축 부분의 열변위
- 2. 칼럼의 기울기
- 2 카러이 키미키ㅅ (
- 3. 칼럼의 최대최소 온도차
- 4. 칼럼 수직 방향의 온도 구배(Gradient)

Fig. 1 Column Model

공작기계는 일반 기계장비와는 달리 응력 설계 가 아닌 강성 설계(변위 설계)를 기본으로 하기 때문에, 변위량, 그 중에서도 공작기계의 형상창성 운동에 직접 참여하는 주축 부분의 열변위를 평가 할 필요가 있다. 그리고 칼럼의 열변형은 주축 모터 로부터의 열적 부하로 인해 칼럼 구조물 전체가 열부하면과는 반대 방향으로 휘는 형상을 나타내 고 있기 때문에 주축 부분의 기울기, 즉 휨 정도를 평가해야 한다.

온도 부분에 관해서는 구조물의 최대최소 온도

한국정밀공학회 2010년도 추계학술대회논문집

차가 상대적인 열변형의 원인이 되기 때문에 평가 해야 하며, 주축 부분의 온도 구배의 파악에 의해 칼럼 구조물의 리브의 영향을 평가할 수 있기 때문 에 평가 항목에 포함시켰다.

4. FEM 해석 결과 및 고찰

Fig. 2에서 제시한 모델을 이용하여 FEM 해석을 실행하였다. 해석은 다음과 같이 주축 모터에서 발생하는 열전도 해석과 주변 공기와의 자연 대류 에 의한 열전달 해석으로 나누어서 실행하였다.

- 주축 모터 부분에 2100 W/m²의 열유속을 60초 동안 지속적으로 부과하였다.
- 2. 칼럼 모델을 3등분하여 칼럼의 하부는 대류 온도가 18℃, 중부는 17℃, 상부는 16℃로 설정 하였다.

구조물의 재료로는 회주철 FC250을 사용하였으 며, FC250의 물성치는 아래 Table 1과 같다.

Fig. 3에 정상 상태에서의 열전도 및 열전달에 의한 온도 분포를, Fig. 4에 정상 상태에서의 열변위 분포를 나타내며, 본 연구에서 정상 상태는 8시간 후로 책정하였다. 구조 해석을 시행할 때에는 칼럼 의 하부 4점을 베드와 볼트 체결되어 있다고 가정하 여 모든 자유도를 구속하였다. 해석 결과, 열전달보 다는 열전도가 평가 항목에 더 큰 영향을 끼침을 알 수 있었으며, 열전도만을 고려하였을 때의 정상 상태의 최대최소 온도차는 8.438℃이었다. 열전도 만을 고려하였기 때문에 최대최소 온도차가 크게 나왔지만, 열전도와 함께 주변 공기와의 자연 대류 를 고려하면 최대최소 온도차는 더욱 작아질 것으 로 예상된다. 칼럼 내부를 관찰하면 리브를 따라서 열이 전도되고 있음을 알 수 있으며, A 모델의 경우 열부과면에 리브가 배치되어 있지 않기 때문 에 열이 부과면에서만 퍼지고 있음을 알 수 있었다.

Table 1 Properties of FC250	
열전도율	50.4 [W/(m·K)]
비열	546 [J/(kg·K)]
밀도	7300 [kg/m3]
열팽창계수	11.5 X 10-6 [1/K]
영율	152.3 [GPa]
열전달계수	20 [W/(m2·K)]

Fig. 2 Temperature Distribution

Fig. 3 Thermal Deformation Distribution

Fig. 4 Temperature Gradient along the Column

Fig. 4는 칼럼의 기울어짐 현상에 큰 영향을 끼치 는 주축 배치면에서의 온도 구배를 나타낸다. 온도 구배는 0.106 ℃/m이었다.

열전도에 의한 열변형 분포를 보면, 열부과면 상단에서 최고 열변형 지점이 나타나고 있으며, 주축 부분에서의 열변위는 정상 상태에서 약 8.893 μm이었다. 열변형 역시 열전달 보다는 열전도에 의한 영향이 더욱 컸으며, 열전도와 열전달을 함께 실행하면, 구조물의 최대 열변위 및 주축 부분의 열변위 역시 작아질 것으로 예상된다.

4. 결론 및 금후의 일정

종래의 수법과는 달리, 열전도와 열전달을 구분 하여 FEM 해석을 실행한 결과, 외부 열원보다는 내부 열원에 의한 온도차 및 열변형이 더욱 컸으며, 열부과면에 리브가 배치되어 있지 않으면, 열이 열부과면에 정체되어 구조물의 최대최소 온도차 가 커짐을 알 수 있었다. 리브의 영향을 더욱 세밀하 게 파악하기 위해서는 나머지 모델에 대해서도 FEM 해석을 실행하여 비교/평가해야 할 것이다.

참고문헌

- 1. Spur, G. and Dencker B., "Wärmeentwicklung and Wärmeaustausch an Werkzeugmashinen," Werhstattstechnik, 58, 260~264, 1968.
- 2. Nobuhiko Nishiwaki, Sankei Hori, Masaomi Tsutsumi, Masanori Kunieda, "Thermal Deformation of Machine Tools Caused by Temperature Variations in Machine Shops," The Japan Society of Mechanical Engineers, 53, 2408~2413, 1987.(in Japanese)