정상상태에서 분산전원 대응형 전압강하 해석에 관한 연구

손준호*, 지성호*, 박현석*, 노대석* *한국기술교육대학교 e-mail: dsrho@kut.ac.kr

A Study On the Steady-state Voltage Profile Analysis for Distribution Feeders with Distributed Generations

Joonho Son^{*}, Seongho Ji^{*}, Hyenseok Park^{*}, Changhyeok Kim^{*}, Daeseok Rho^{*} ^{*}Korea University of Technology and Education

요 약

최근 태양광, 풍력 등의 분산전원이 배전계통에 도입되어 운영되고 있다. 현재의 배전계통에 스마트 그 리드 연계 시 전력 공급의 신뢰성 및 안정성, 전력 품질의 확보를 위한 계통 계획이나 해석을 위해 가장 기본적으로 역 조류를 고려한 전압강하 계산이 필요하다. 본 논문에서는 기존의 역 조류 전압강하 계산방 법을 개선하여, 분산전원의 출력변동(역 조류)을 고려하여, 간편하게 전압강하를 계산할 수 있는 분산전원 대응형 전압강하 해석법을 제안하고자 한다.

1. 서 론

최근 정부의 녹색성장 정책에 의하여, 2030년까 지 전체 에너지원 중 신 재생에너지의 비중을 전체 에너지원의 11% 정도로 확대하는 정책('06년 현재 2.2%)을 적극적으로 추진하고 있다. 국가차원의 녹 색성장에 따른 신재생에너지의 확대보급 활성화 방 안에 따라 지자체와 발전사업자 등의 분산전원 도 입계획은 많은 반면, 아직 국내에는 대용량 분산전 원의 계통연계에 대한 기술기준 및 체계적인 선로 운영 기술기준이 미흡하다. 현재 배전계통에 다수 의 분산전원[태양광]이 지속적으로 연계되고 있는 실정이며, 분선전원이 배전계통에 투입 시 전력품 질[과전압, 저전압] 및 보호협조문제(OCR 오 • 부 동작)가 발생되고 있다. 이런 문제를 해결하기 위 한 방안으로 역조류 해석이 반드시 선행되어야 하 며, 본 논문에서는 실제적으로 분산전원의 출력변 동(역 조류)에 의한 계통의 전압변동과 이론적인 계산치를 얻었으며 결과를 수집/분석 과 정 중 분 산전원의 특성을 고려한 분산전원 대응형 전압강하 해석법을 제안한다.

2.1 배전계통에서 일반적인 전압해석 방법

그림 1은 선로말단에 단일부하가 집중되어 있을 경우 단상 2선식 배전선로의 등가회로이다. 3상3선 식의 경우에도 1상분의 양을 취급하면 단상회로의 경우와 똑같이 계산 할 수 있다. 그림 1에서 임피 더스는 Z=R+jX이며, *Es*, *Er*은 송전단 및 수전단에 서의 대지 전압[V]이며 △ *V*는 아래와 같이 구할 수 있다.

 $(IXcos\theta - IRcos\theta)$ 를 무시하게 되면,

$$|Es| = \sqrt{(Er + IR\cos\theta + IX\sin\theta)^2}$$

= $Er + I(R\cos\theta + X\sin\theta)$

이고, 따라서

$$\Delta V = |Es| - |Er| = I(R\cos\theta + \sin\theta)$$

이다.

즉 기존의 전압강하 해석방식은 분산전원 투입에 따른 역조류 해석을 전혀 고려하지 않았으며, 만약 분산전원이 투입하게 되면, 전압강하 크기인 스칼 라에 방향만 반대로 표시함으로써 분산전원의 투입 에 따라 변하게 되는 역률(Cosθ)와 효율(sinθ)을 전혀 고려하지 않게 되어 분산전원 투입에 따른 전 압강하해석에 많은 오류가 발생하게 된다.

[그림 1] 기존의 방식 I

한편, 일본의 구주전력에서 제안한 전압해석 방 법은 부하전류(I)를 유효전류 분(I_p)과 무효전류 분 (I_q)으로 분해하고, 조류 방향(유효전력의 방향)과 무효전력을 적정하게 반영하여, 조류의 방향을 기 준으로 해석하였다. 그림 2는 역조류와 진상역률이 존재하지 않으며, 순 조류와 지상역률만을 고려하 여 계산하는 것이다. 따라서 이 영역에서는 전압상 승은 발생하지 않으며, 단지 전압강하만 존재한다. 하지만 이 해석방법은 삼각함수의 수학적 해석방법 에 오류가 있다. 진상역률과 지상역률의 수직방향 이 바뀌어, 1,2,3,4상한에 따른 역률(cosθ)과 효율 (sinθ)을 계산하기 이전에 θ = tan-1 (Q/P)를 면 저 구해야 하며, 계산상 해석하기가 복잡한 문제점 이 있다.

[그림 2] 기존의 방식Ⅱ

2.2 분산전원 대응형 전압강하 계산법

그림 3과 같이 삼각함수의 좌표평면 해석으로, 유·무효 전력에 따른 피상전력을 기준으로 역률 (Cos⊖)과 효율(Sin⊖)의 크기와 방향이 정해지며 특히 선로조건에 따라 6가지의 경우로 분석이 가능 하며, 선로의 전압강하(+△V) 및 상승(-△V)을 쉽 게 확인 할 수 있으며 전압의 상승 또는 강하분을 계산하여 계통해석이 가능하다. 단거리선로에서의 전압강하 식은 △V=I×(Rcos⊖+Xsin⊖)이다.

유·무효전력에 따라 역률(Cosθ),효율(Sinθ)값이 결정되며, 분산전원과 부하용량에 따라 역조류 유 ·무가 결정되며 이 3가지 Parameter(Cosθ, Sinθ, (역)조류)에 의해 선로전체의 전압이 상승 또는 강 하하게 된다. 그리고 청색의 수직점선을 기준으로 송전단전압(Er)과 수전단전압(Es)관계에 의한 ±△ V값을 좌표에 표시함으로써 2차원적으로 전압 상 승·강하를 쉽게 해석할 수 있다.

[그림 3] 분산전원 대응형 전압강하해석 개념도

그림 3의 ①, ⑤, ⑥은 부하용량 > 분산전원일 때, 유도성 부하(+Q)와 용량성 부하(-Q)에서의 전 압 상승•강하의 알고리즘을 표 2에 표현하였다.

비교조거	부하용량 > 분산전원		
미포조신	유도성 부하(+Q)	용량성 부	·하(-Q)
상한별 벡터도	$X \bowtie^{Q} \mathfrak{A} \xrightarrow{P} \mathfrak{A}$ + Q + Q $S \bowtie \theta = \frac{P}{S} \Rightarrow +$ $S \ggg \theta = \frac{Q}{S} \Rightarrow +$ $S \bowtie \theta = \frac{Q}{S} \Rightarrow +$ $P \longrightarrow P$ $Q \bowtie^{Q} \mathfrak{A} \mathfrak{A}$	지상역률 +우 -P 전상역률	Q $\cos \theta = \frac{P}{S} \Rightarrow +$ $\sin \theta = \frac{-Q}{S} \Rightarrow -$
선로 조건	Rcosθ>0, Xsinθ>0 [Φ]	Rcosθ> Xsinθ[⑤]	Rcosθ< Xsinθ [@]
전압강하 계산식	$\triangle V=I\times(Rcos\theta+Xsin\theta)$	$\triangle V = I \times (Rcc$	sθ-Xsinθ)
선로 전압강하 및 상승	+△V (전압강하)	+△V (전압강하)	-△V (전압상승)

[표 2] 태양광전원 연계 시 전압강하 특성 분석표(2-1)

1상한의 경우 부하용량이 > 분산전원이며 전원 측에서 부하특성에 추정하여 전력을 공급하게 되며 전압 강하(조류)만 발생한다. 그림 3의 ①지점을 통 해서 쉽게 확인 할 수 있다. 4상한의 경우 2가지의 경우로 나누어 해석할 수 있다. 첫째 선로 조건 중 Rcosθ > Xsinθ보다 클 경우, △V=I×(Rcosθ-Xsin θ)에서 (Rcosθ-Xsinθ)부분이 +가 되어 I는 양수라 는 가정하여 전압강하(+△)로 해석할 수 있으며 그 림3의 ⑤로 확인 할 수 있다. 만약 Rcosθ < Xsin θ인 경우, (Rcosθ-Xsinθ)이 -가 되어 전압상승(-△V)으로 해석할 수 있으며 이때 수전단 전압(Er) 이 송전단 전압(Es)보다 커짐을 알 수 있으며 그림 3의 ⑥으로 확인 할 수 있다.

그림 2의 ②,③,④는 부하용량 < 분산전원일 때,

유도성 부하(+Q)와 용량성 부하(-Q)에서의 전압 상승·강하의 알고리즘을 표 3에 표현하였다.

[표 3] 태양광전원 연계 시 전압강하 특성 분석표(2-2)

비교즈거	부하용량 < 분산전원		
	유도성 부하(+Q)	용량성 부	-하(-Q)
상한별 벡터도	-P +Q -P	$\cos \theta = \frac{-P}{S} \Rightarrow - \sin \theta = \frac{Q}{S} \Rightarrow + \sin \theta = \frac{Q}{S}$	지상역률 +Q 1
	COS $\theta = \frac{-P}{S} \Rightarrow -$ SIN $\theta = \frac{-Q}{S} \Rightarrow -$ Σι λθ α	-P	5 P · 진성역률
선로 조건 Rcos	Rcosθ>0, Xsinθ>0	Rcosθ<	Rcosθ>
	[④]	Xsinθ[②]	Xsinθ [3]
전압강하 계산식	$\triangle V=I\times(-R\cos\theta-X\sin\theta)$	△V=I×(-Rc	osθ+Xsinθ)
선로 전압강하 및 상승	$- \bigtriangleup V$	$+ \triangle V$	$- \bigtriangleup V$
	(전압상승)	(전압강하)	(전압상승)

3상한의 경우 부하용량이 < 분산전원이며 분산 전원출력이 부하용량에 공급되며 잉여 전력은 전원 측으로 공급되어 전압 상승(역조류)이 발생한다. 그 림 3의 ④지점을 통해서 쉽게 확인 할 수 있다. 2 상한의 경우 2가지의 경우로 나누어 해석할 수 있 다. 첫째 선로 조건 중 Rcosθ < Xsinθ보다 클 경 우 △V=I×(Rcosθ-Xsinθ)에서 (Rcosθ-Xsinθ)부분 이 +가 되며 I는 양수라는 가정하여 전압강하(+△) 로 해석할 수 있으며 그림 3의 ②로 확인 할 수 있 다. 만약 Rcosθ > Xsinθ인 경우, (Rcosθ-Xsinθ) 이 -가 되어 전압상승(-△V)으로 해석할 수 있으 며 이때 수전단 전압(Er)이 송전단 전압(Es)보다 커짐을 알 수 있으며 그림 3의 ③으로 확인 할 수 있다.

2.3 기존방식과 제안한(분산전원 대응형 전압강하 해석)방식의 비교

기존의 방식과 제안한 방식에 대한 특징을 비교하면 표 4 와 같다.

비교조건	기존의 방식 I	기존의 방식Ⅱ	제안한 방식
벡터도	Èr de Erne		P 1010-1010 1010-100 100-100 1000-100 1000-100 1000-100 1000-100 1000-100
기 준	수전단 전압	전 류	(피상)전력
역 률	$\theta = \tan^{-1} (\vec{E}s / \vec{E}r)$ 이용하여 Cos θ 와 Sin θ 를 구함($\vec{E}s$ 는 \vec{Es} 의 동상 성분	θ = tan-1 (Q/P) 이용하여 Cosθ와 Sinθ를 구함	피상전력(S = √ <u>P²+Q²</u>)이용 하여 Cosθ와 Sinθ 를 구함

[표 4] 기존방식과 제안한 방식의 비교

	<u> </u>		
특 징	분산전원을 고려하 지 않았음.(역조류 개념없음)	순·역조류 및 진·시 상을 이용한 전류의 벡터를 구한 후 ± △V 구함	유•무효전력을 이용 한(피상)전력이용하여 ±△V 구함

표 5와 같이 지상역률 0.91운전 시, 800[W]/540[var], 선로임피던스=5+j2[Ω],분산전원=900[W]일 때 이전방 식과 제안된 방식을 비교 분석하였다. 제안된 방식이 삼각함수의 좌표평면 해석으로, 계산의 편의성을 확인 할 수 있었다.

[표 5] 제안한 방식의 예시

기존방식 I	
P = 부하 - 분산전원	△V = I * Z
= 800 - 900 = 100	= 2.505 * (0.916) = 2.295
θ = tan-1 (Q/P) = 79.509	: 부하측 잔압 = 219.3 - △V = 217.005
cosθ(수정역률) = 0.182	실측치 215.4
Z = R * cosθ + X * sinθ	오차 = 이론치 - 실측치 = 1.605
= 5*(0.182) +2*(0.0032) =0.916	오차율 = (오차/실측치)*100 = 0.745[%]
I = 100/(219.3 * 0.182) = 2.505	(역조류를 고려하지 않아 오차가 카졌음)

기존방식Ⅱ	제안한 방식
P = 부하 - 분산전원 = 800 - 900 = -100 θ = tan-1 (Q/P) = -79,509 cosθ(수정역률) = 0.182 Z = R * cosθ + X * sinθ =5*(0.182) +2*(-0.983) = -1.056 P = I * V * cosθ, I = P/(V * cosθ) I = -100/(219.3 * 0.182) = -2.505 △V = I * Z = -2.505 * (-1.056) = 2.645 ∴ 부하측 전답 = 219.3 - △V = 216.655 실즉치 215.4 오차 = 이론치 - 실즉치 = 1.255	$\begin{split} P &= \mbox{$\stackrel{+}{\forall}$$\stackrel{-}{\forall}$$\stackrel{+}{\forall}$$\stackrel{-}{\forall}$$\stackrel{+}{\forall}$$\stackrel{-}{\forall}$$\stackrel{+}{\psi}$$\stackrel{-}{2}$= 549.181[VA] \\ &= 800 - 900 = -100 \\ S &= \sqrt{P^2 + Q^2} = 549.181[VA] \\ &\cos\theta(\mbox{$\stackrel{-}{\forall}$$$\cos\theta$ = P / S = -0.182 \\ Z &= R * \cos\theta + X * \sin\theta \\ &= 5 * (-0.182) + 2 * 0.983 = 1.056 \\ P &= I * V * \cos\theta + Z * 0.983 = 1.056 \\ P &= I * V * \cos\theta + I = P / (V * \cos\theta) \\ I &= -100 / (219.3 * (-0.182)) = 2.505 \\ &\Delta V = I * Z \\ &= 2.505 * 1.056 = 2.645 \\ &\vdots \mbox{$\stackrel{+}{\Rightarrow}$\stackrel{-}{\Rightarrow}$$\stackrel{+}{\forall}$\stackrel{+}{\Omega}$\stackrel{+}{=}$ 219.3 - \Delta V = 216.655 \\ & \ \ \ \begin{tabular}{lllllllllllllllllllllllllllllllllll$
오치율 = (오치/실측치)*100 = 0.583[%]	오차율 = (오차/실즉치)*100 = 0.583[%]

3. 결 론

본 논문에서는 분산전원 도입 시, 역조류 해석 을 편리하게 하기 위해, 삼각함수의 좌표평면 해석 인 수학적 개념을 활용하여 정상상태에서 전압상승 •강하에 대한 계산을 용이하게 한 분산전원 대응 형 전압강하 계산법을 제안하여 계통해석을 쉽게 하였다.

참고문헌

- [1] 노 대석 외 3인, "저압 배전선로에 연계된 태 양광발전의 정상상태 특성연구", 대한전기학회 전력기술부문회 전력계통연구회 춘계학술대회 논문집, 2010.5
- [2] 송길영, "최신 송배전공학", 동일출판사