유연 구조의 자동평형장치를 이용한 광디스크 드라이브의 진동 저감 Vibration Reduction of Optical Disk Drive Using a Flexible Structure Auto-Balancer

오원석* · 조웅래** · 임승호* · 박노철* · 박경수 † · 박영필* · 유승헌*** Wonseok Oh, Ungrae Cho, Seungho Lim, No-Cheol Park, Kyung-Su Park, Young-Pil Park, and Seung-Hon Yoo

1. 서론

HD 급 고화질 영상이 대중화됨에 따라, 광디스크 드라이브의 기록 및 전송 속도 향상에 대한 요구가 증가하고 있다. 그러나 고속 회전 시, 제작 공차와 재료의 불균질로 인해 편심을 가지는 광디스크는 과 도한 진동 및 소음을 유발하여 광디스크 드라이브의 성능을 제한한다. 따라서 광디스크의 고속회전에 효 과적인 방진 메커니즘 개발이 필요하다. 그 가운데 여러 개의 볼을 이용한 자동평형장치는 상용 제품에 널리 적용되고 있으며, 이에 대한 여러 연구가 진행 되었다. 박준민[1] 등은 자동볼평형장치의 작동원리 에 대한 이론을 정립하고, 설계기준을 제시하였다. 그러나 자동볼평형장치는 턴테이블과 볼 사이에서 긁히는 소음을 발생하며, 적용 회전주파수 대역이 좁다는 한계를 가진다. 이를 극복하기 위해 Cheng[2] 등은 스핀들 모터의 회전 속도에 따라 동특성이 변 화하는 유연 구조물의 자동평형장치를 자동볼평형장 치의 대안으로 제시하였다. 이 유연 구조의 자동평 형장치는 넒은 주파수 대역에서 동흡진기의 역할을 수행할 수 있게 설계되었다. 그러나 이 유연 구조의 자동평형장치는 리브와 림의 두께가 매우 얇아 구조 적으로 취약하다. 따라서 본 연구에서는 부가 질량 을 가지는 자동평형장치 구조를 설계하였다. 부가 질량은 광디스크의 편심을 보상하는 한편 고유주파 수를 감소하여 림과 리브의 두께를 증가시킬 수 있 게 하여 제작 시 공차의 여유를 확보할 수 있게 한 다. 제시된 자동평형장치의 설계를 위해 유한요소 모델을 구축하였으며, 실험 모달해석을 통하여 유한 요소 모델을 검증하였다. 또한 자동평형장치의 형상 최적화 과정을 거친 후, 자동평형장치의 진동저감 효과를 실험적으로 평가하였다.

† 박경수; 연세대학교 기계공학과 E-mail: pks6348@yonsei.ac.kr Tel: (02) 2123-4680, Fax: (02) 365-8460

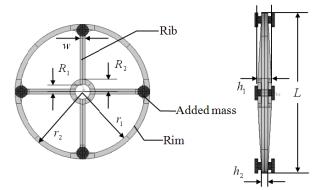


Fig. 1 Flexible structure auto-balancer

2. 유한요소 해석 모델

2.1 유한요소 해석 모델

유연 구조의 자동평형장치는 기존의 자동볼평형장치와 같이 스핀들 모터에 설치하며 Fig. 1 과 같이림, 리브, 부가 질량으로 이루어졌다. 평형장치의 해석 모델을 구축하기 위해 상용 유한요소 해석 프로그램인 ANSYS 를 이용하였다. 이 때 해석의 정확도를 높이기 위해 모든 요소를 8 절점 육면체 요소로생성하였다.

회전 구조물의 고유주파수는 원심력에 의해서 변화된다. 원심력은 구조 강성을 증가시켜 회전 구조물의 고유주파수를 증가시키는 동시에 반경 방향의유효 반경을 증가시켜 고유주파수를 감소시킨다. Fig. 2 는 물체의 회전 시, 원심력에 의하여 고유진동수가 크게 변화하는 것을 보여준다. 따라서 정확한 해석을 위해서 원심력에 의한 효과를 유한요소 해석에 적용하였다.

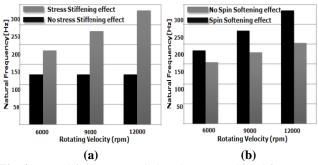


Fig. 2 Natural frequency variation due to centrifugal force

^{*} 연세대학교 기계공학과

^{**} LIG Nex1

^{***} Hitachi-LG Data Storage, Inc.

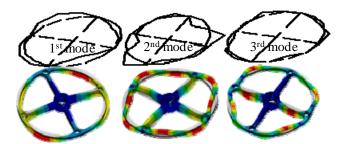


Fig. 3 Mode shape: experimental (top) and FEM (bottom)

Table 1 Natural frequency (unit : *Hz*)

Mode	FEA	EMA	Error(%)
1 st mode	152.6	149.5	2.1
2 nd mode	350.5	379.4	-7.6
3 rd mode	666.5	663.8	0.4

Table 2 Geometry of auto-balancer (unit: mm)

R_I	R_2	r_1	r_{I}	w	h_1	h_2
1.5	2.5	12.5	13.5	1.0	3.0	1.0

2.1 실험 모달 해석

유한 요소 모델의 물성과 기하학적 정보를 튜닝하기 위해 모달테스트를 수행하였고, 동특성을 확인하였다. Table 1 은 고유주파수가 전반적으로 잘 맞는 것을 보여준다. 또한 해당 고유형상을 비교하기 위해 상용 소프트웨어인 STAR Modal 을 이용하여 실험적으로 모드 형상을 구하였으며, Fig. 3 과 같다. 위의 해석결과를 바탕으로 해석 모델의 동특성이 실모델과 일치한다는 것을 알 수 있다.

3. 자동평형장치의 형상 최적화 및 성능평가

3.1 자동평형장치의 형상 최적화

검증된 유한요소 모델을 이용하여 자동평형장치의 형상 최적화를 진행하였다. 광디스크 드라이브의 작 동 범위에서 자동평형장치가 광디스크의 회전주파수 와 같은 편심 모드 주파수를 갖도록 설계하였다.

APDL(ANSYS Parametric Design Language)을 이용하여 유연 구조물의 기하학적 형상 변수화를 통해 모델링하여 최적화 작업을 진행하였다. 최적화된 자동평형장치의 편심모드 무게중심은 광디스크 편심의 반대 위상을 가져 광디스크의 편심을 보상한다.

3.2 자동평형 성능 평가

자동평형장치의 성능평가를 위해 $0.3g \cdot cm$ 의 편심량을 가지는 디스크로 광디스크 드라이브를 가진하여 베이스 구조의 평면내 방향 진동을 측정하였다. Fig. 4 는 8,500Hz 이상의 주파수에서 광디스크 회전 시 유연구조 자동평형장치가 진동을 효과적으로 감소시키는 것을 보여준다.

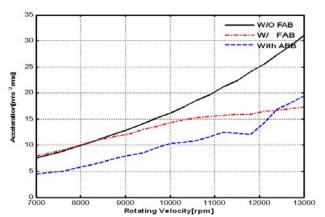


Fig. 4 Vibration amount according to the rotation frequency

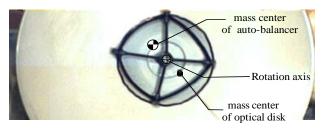


Fig. 5 Eccentric mode (Rotating at 12,000rpm)

3.2 고속촬영을 통한 자동평형장치 작동확인

고속촬영으로 유연 구조물의 변형을 측정하여 자동평형장치가 작동하는 것을 확인하였다. Fig. 5 는편심모드에서 자동평형장치의 무게 중심이 광디스크편심의 반대방향으로 이동하여, 광디스크의 편심을 보상하는 것을 보여준다.

4. 결 론

본 연구에서는 부가 질량을 갖는 유연 구조의 자동평형장치를 설계하여 광디스크 드라이브의 고속회전에 따른 진동을 저감하였다. 유한요소 모델을 구축하였으며, 최적화 과정을 바탕으로 자동평형장치를 제작하여 디스크 드라이브의 회전 속도에 따른진동 성능을 평가하였다.

후 기

본 연구는 Hitachi-LG Data Storage 의 지원을 받아 이루어졌으며, 이에 관계자분들께 감사 드립니다.

참고 문헌

[1] Junmin Park, Dae-Sung Ro, and Jintai Chung, 1999 "Vibration Analysis of Automatic Ball Balancer", *Proceeding of the KSNVE Annual Conference*, Vol.9, No.2, pp. 363–370

[2] C.C. Cheng, F.T. Wu, K.S. Hsu, and K.L. Ho, 2008, "Design and Analysis of Auto-Balancer of an Optical Disk Drive Using Speed-Dependent Vibration Absorbers", *Journal of Sound and Vibration*, Vol.311, pp. 200–211