Stackable LAN-XI를 이용한 적용기법

Application of Stackable LAN-XI

나두용† Na Doo-Yong

1. 서 론

최근 진보된 설계 및 생산기술의 발전으로 거대구조물에 대한 동적해석의 필요성이 증대함과 동시에 실험적인 분석활동 역시 비례하여 증대되었다. 이러한 요구에 대응하여 더욱 정밀한 계측분야의 신기술에 대하여 고찰하고 적용기법에 대해 소개 하고자 한다.

2. 신기술 소개

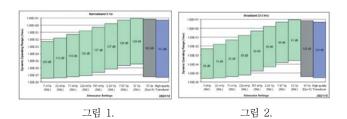
2.1 LAN-XI

LAN-XI는 4세대 DAQ장비로써 친환경 소재 사용으로 RoHS 인증, 모듈 당 15W이내의 저전력, 무소음으로 무향실 및 잔향실내 사용가능하며 신호케이블 길이를 최소화하여 노이즈 제거, 체널 당 125그람의 경량, 마그네슘 합금케이징의 내구성 확보, 금도금 콘넥터 및 회로적용으로 노이즈 제거 및 독립성과 분산성을 갖추고 있다.

2.2 Dyn-X Technology

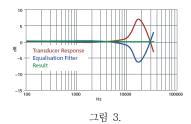
24bit A/D 컨버터에서 이론적인 최대 입력 다이나믹 레인지는 144dB이나 기술적인 한계로 인해 100dB에서 110dB의 한계를 Dyn-X 테크놀러지는 협대역 6Hz해상도에서 160dB(그림 1)를 구현하고 20Hz에서 25.6kHz의 광대역에서 127dB(그림 2)이상의 다이나믹 레인지를 확보하는 기술로써 측정 시 입력신호의 Overload 및 Over-amplification을 제거하였으며 참고로 식 1.은 24bit A/D의 다이나믹 레인지 연산식이며 식 2.는 백색잡음 고려한 연산식이다. 여기서 N:연산bit, F_s :샘플링 주파수, F_{NDW} :협대역 폭

Bruel & Kjaer Division of Spectris


† Korea LTD.

E-mail: dyna@bksv.com

nadooyong@pusan.ac.kr Tel:(031)705-0605, Fax:(031)708-0602


M.P.: 010-2830-3254

$$\begin{split} DR &= 20 \mathrm{log} \Biggl(2^N \times \sqrt{\frac{F_s}{2 \times F_{NBW}}} \Biggr) & \stackrel{\triangle}{\sim} 1. \\ DR &= 20 \mathrm{log} \Biggl(2^N \times \sqrt{\frac{F_S}{2 \times F_{NBW}}} \times \sqrt{1.5} \Biggr) & \stackrel{\triangle}{\sim} 2. \end{split}$$

2.3 Req-X Technology

Response Equalization Extreme(REq-X)는 가속도계, 마이크로폰 및 커플러의 물리적 특성으로 인한 주파수 영역의 제한을 확장시키는 기법으로 센서의 교정된 주파수응답의 특성에 역 주파수응답특성의 필터로 균등화(그림 3)하여 가속도계인 경우 5dB 정도(精度)에서 약 30% 측정 주파수 영역이 확장 가능하다.

2.4 PoE

Power of Ethernet(PoE)은 저전력 원거리 전원공급이 가능하여 네트워크 라인으로 신호 및 전원을 사용함으로서 측정장소의 제한된 환경을 극복할 수 있는 방법이며 분산 DAQ장비의 확장성에 기반을 두고 있으며 IEEE-802.3af 표준을 만족한다.

2.5 PTP

Precision Time Protocol(PTP)는 분산 LAN-XI DAQ시 스템의 동기화에 통신네트워크 단일케이블로 140미터 이격된 LAN-XI DAQ 간에 25.6kHz 주파수 레인지에서 동기화 위상을 최대 ± 0.15 이내로 유지 시키며 향상된 IEEE-1588 기반으로 신뢰성을 확보한다(그림 4.).

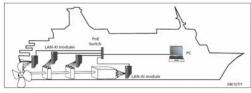
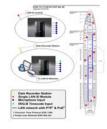


그림 4.


3. 적용 및 활용

LAN-XI DAQ의 PoE 및 PTP를 적용한 분산배치로 작업시간 단축 및 신호 케이블 노이즈 제거, Dyn-X 및 Req-X 기술을 이용한 Overload없는 과도상태 신호의 측정과 제한된 물리적 센서의 주파수영역 확대로 다양하게 적용가능하다.

3.1 적용

선박

항공

발사체

Military Equip.

3.2 활용

When the measurement must be right the first time Crash testing Destructive testing Heavy Machinery – run up/coast down	When signal levels are unknown Run up/down Field testing Trouble shooting
When time is limited Test cells Wind tunnels Road testing Flight testing	When performing high-dynamic applications - Structural measurements - Run up/down - Impulsive testing, room acoustics - Electroacoustics
When user interaction is minimal Road testing Flight testing Untrained operator When testing is unattended Monitoring Production line testing	When it is difficult to get an overview of the whole measurement scenario • Multi-channel measurements • Multi-analysis measurements • Test cells • In-car testing • Sound, vibration and other parameters involved

4. 결 론

2.절에서 소개한 신기술과 3.절에서의 적용 및 활용을 바탕으로 Stackable LAN-XI를 거대구조물 선박, 항공, 발사체, Military Equipment 등의 측정환경에 적용 할 경우 향상된 데이터의 신뢰성을 바탕으로 측정환경의 극복, 작업시간의 단축 등에 기여를 할 것이다.

참고문헌

- (1) B&K "Technical Review" No1 2006 pp.1~14
- (2) Song,E.Y. Lee, K. "Precision Clock Synchronization for Measurement, Control and Communication, 2008. ISPCS 2008. IEEE International Symposium on pp23~28.
- (3) IEEE Std 802.3ak-2004 (Amendment to IEEE Std 802.3-2002 as amended by IEEE Stds 802.3ae-2002, 802.3af-2003 and 802.3aj-2003)