
A Reservation-Based Protocol for Timely Web Services
Transaction

Lin Qing, Aziz Nasridinov, Jeongyong Byun

Department of Computer and Multimedia, Dongguk University
e-mail :qinglin9@gmail.com, aziz_nasridinov@yahoo.com, byunjy@dongguk.ac.kr

시간 요구 웹서비스 트랜잭션을 위한 예약기반 규약

림 청, 아지즈 나스리디노프, 변정용
동국대학교 컴퓨터멀티미디어학부

Abstract

Business transactional process is usually long running computation which requests services from
multiple enterprises. Web Services Transaction specification (WS-TX) defines a protocol, WS-
BusinessActivity which is specifically designed for such lengthy interaction and maintains overall
consistency through compensation. However timely web services transaction is prone to compensate
due to tasks’ missing deadline. Therefore, this paper proposes a reservation-based protocol which is
used to select providers who can provide resources promptly and deselect ones who may fail. And this
selection happens during resource reservation phase and before real commitment. In this way, we
achieve the goal of minimizing transactions’ compensation. Finally, we design the framework
architecture for the proposed protocol that is extended from WS-BusinessActivity.

1. Introduction

Web service-based business processes consist of long-
running, complex transactions involving numerous services.
However it’s impossible to utilize ACID in business
processes, for the reason that exclusive locking resources
over extended periods of time is impractical and the isolation
is relaxed, though we still hope for all-or-nothing semantics,
consistent outcomes and some level of durability [1].
Fortunately, candidates for just such a protocol do exist,
which is Web Services Transaction specification (WS-TX). It
consists of WS-Coordinator, WS- AtomicTransactions and
WS-BusinessActivity. WS-BusinessActivity is a protocol,
which specifically designed for such lengthy interaction and
maintains overall consistency through compensation.

However, timely web services transaction is prone to
compensate due to tasks’ missing deadline. For example,
consider a Web service-based process for ordering two car
parts from two retailers. Both two parts are indispensable to
repair a car and customer has a deadline. That means if one
task in the ordering transaction is late, customer won’t be
interested in a successful termination that violates the
deadline. And then the transaction has to be compensated.

In this paper, we ensure transactional timeliness through
two aspects. One is to select providers that can give
resources promptly. And it’s better to do this before
transaction’s real commitment because compensation is not
expected. Hence our solution is to apply resource reservation
with a time constrain. We say only by every task’s gaining
resource reservation in time can the transaction begins to
commit. Otherwise it has to be cancelled, even if only one

task fails to get reservation in time. This is required by
transactional properties such as atomicity and consistency.

The other important aspect to ensure timeliness is that
deselecting unconfident providers during resource
reservation phase. “Unconfident” means even reservation is
obtained by a task, resource provider has potential problems
that prevent transaction from completing on time. The most
crucial one is concurrent conflict in provider’s side. For
example, ORDER transaction depends on SUPPLY
transaction when the resources are insufficient for ORDER.
And two business transactions are concurrently processed. In
this case, ORDER has to wait for SUPPLY’s completion. [4]
found a solution to detect and to ask transaction to wait.
Therefore, our protocol is designed to avoid that kind of
concurrent conflict through resorting to alternatives during
resource reservation phase.

In this paper, we extend WS-BusinessActivity protocol
[4] to ensure every task in one transaction to get resource
reservation in time so that the transaction can process
without delay. In addition, providers’ time limit for resource
reservation is taken into consideration. Finally, we achieve a
goal of minimizing the number of compensated transactions
due to missing deadlines.

The rest of paper is organized as following: in the 2nd
chapter we will discuss related studies. Then we will focus
on motivating scenario and discuss proposed method. System
design and algorithm will be illustrated in the 5th chapter.
Paper will be concluded with conclusion.

- 996 -

제34회 한국정보처리학회 추계학술대회 논문집 제17권 2호 (2010. 11)

2. Related Studies

 [5] describes a reservation-based extended transaction
protocol that can be used to coordinate such business
activities. However, they didn’t consider time constrains for
reservation and their protocol doesn’t work when it
encounters concurrent conflict. That means delay still exists.
Moreover, system design isn’t given out in this paper.
Therefore, our paper is going to enhance their solution and
make a design extended from WS-Tx.

[6] paper’s aim is to reach an agreement between the
client and all participating providers (participants) on what
transaction processing times have to be expected, accepted
and guaranteed. In this way, a global consistency and
correctness can be guaranteed. Actually applications can’t
control the moment of resource locking in that time span.
Because locking database is a problem left to internal
database control. It’s impractical to apply this mechanism in
reality. Hence we propose to use resource reservation, which
can be fully controlled by web service application.

[7] solved the concurrent problem of web service
transaction through provider sides’ serialization graph which
contains transactional dependency information. And “wait”
state is added into their protocol to avoid conflict. Obviously,
since that waiting time is imponderable due to human
involvement, time constrain should be taken into account
when applying to timely web service transactions. It is the
problem that we want to solve in our paper.

[8] tries to select the most proper providers who give
reservation for web service transaction. Since their selection
criteria includes customer’s deadline, they have to evaluate
providers’ processing time. It is hard to do because of
business processes’ dynamicity. In this paper, we select the
most appropriate one depending on participants’ ability of
resource reservation before the pre-designed deadline.

3. Motivating Scenario

The following scenario in Figure 1 shows an order
transaction and its hierarchy model. Here we have one
transaction called “Car parts order” and its two tasks
“Transmission Order” and “Braking Order”.

Figure 1.The example of an order transaction and its
hierarchy model

Let’s suppose someone’s car gets crashed and two parts,

i.e. transmission and braking, need to be changed. The repair
shop’s application can be used to order them automatically
from two retailers by connecting to their web services.
Particularly customer wants his car to be repaired in two days.
Otherwise he will give up repair. In this case, repairman says
he needs one day to fix the car, so all the parts are supposed
to arrive on the first day.

Problems come when braking retailer notifies repair shop
a delay. While it’s already in the late afternoon, new
transmission has arrived, and it’s too late for delivery.
Consequently, Transmission order task has to compensate.
This is a typical problem caused by overtime tasks in a
timely business transaction.

Our solution is to divide the order task into two phases:
reservation and order, and give a deadline for reservation
phase which is shown in Figure 2. From this figure, we also
can tell how this reservation phase behaviors and how
important it is for the whole car repair activity.

Figure 2. A solution proposed to solve the late problem

During reservation phase, resource reservation results are

collected and evaluated. Eventually transaction chooses
participants for each task. After actual resource reservation,
customer can complete and pay at any time but before
retailer’s reservation deadline. Also this resource is no longer
accessible for transactions. The order phase involves the
completion of the transaction.

4. System Design Extended from WS-TX

In this part, we are going to apply our solution to WS-Tx.
This transaction specification defines mechanisms for
transactional interoperability between Web services domains
and provides a means to compose transactional qualities of
service into Web services applications [2].

Here we assume there are always plenteous resource
retailers. Since our main purpose is to apply reservation
mechanism to WS-Tx, WS-BusinessActivity’s compensation
part won’t be repeated in this paper. The detailed description
is in [4], WS-BusinessAcitiviy specification.

Figure 3 is the coordinator’s framework which is
extended from WS-Coordinator [3]. The grey arrows denote
message communications, which reference to WS-
Coordinator [3] directly. And the deep blue arrows are the
extended parts. Besides, there resides Local Serialization
Graph [7] in provider’s side, which is used to record
dependent relationship with other transactions.

Figure 4 shows the sequence diagram which depicts
every possible interaction in our design. And the deep blue
arrows point out the interactions we design for resource
reservation. Moreover, the corresponding interaction
modules in the framework can be found in Figure 3 the blue
strips in Figure 4 mean that time constrains have effect on
interactions.

- 997 -

제34회 한국정보처리학회 추계학술대회 논문집 제17권 2호 (2010. 11)

Figure 3. Extended Coordinator Framework and Message
Flow

Figure 4. Sequence Diagram for our protocol extended from

WS-BinessActivity

Step1: Customer’s application sends message to coordinator
to ask for reservation.
Step2: Coordinator sends reservation requests to all of the
participants.
Step3: Braking Participant1 (P4) gives the reservation, but
P4 has a time limit for customer’s holding resource. So when
time is out, P4 has right to exit the transaction.
Step4: The coordinator gets the reserved reply from
Transmission Participant2 (P2), but with a notification saying
there is a concurrent conflict with other transactions in P2’s
side. As long as a more proper candidate, e.g. Transmission
Participant1 (P1), appears, the coordinator cancels this task
from P2.
Step5: A successful reservation from Braking Participant2
(P5).
Step6: A successful reservation from Transmission
Participant1 (P1).
Step7: When the time for resource reservation runs out,
customer’s application collects candidates from coordinator
and decides which one to choose for each task.
Step8: Transmission Participant3 (P3) gives the reservation
overtime, and coordinator cancels it directly.
 One important thing we have to point out is if no proper
candidate appears for one task, and if this task is absolutely
essential to the transaction it belongs to, the coordinator can
repeat the reservation collection until it gains all necessary
reservations. Otherwise the transaction should close when to
reach a customers’ maximum waiting limitation.

Figure 5. State Diagram

Figure 5 shows the participants’ state and message flow.

The red circles are the states we add to the original WS-
BusinessActivity protocol.
Reserving: It is a state, which is after participants’
registering into the coordinator and receiving Reserve
Request message, when participants are making reservation
for this transaction.
Reserved: Resource is reserved by this transaction, and
others can’t access to this part of the resource anymore. Once
customer wants the participants to complete, he can get the
resource easily.
Canceling: It is for canceling and removing participants
from this transaction. This canceling is much easier than
compensation, which is also a kind of cancel, but would
generate more cost and can’t eliminate effects entirely.
Exiting: It is the state for participants’ quit from this
transaction autonomously. Especially when web services
providers don’t allow transaction’s long holding resource.

5. Algorithm Design

In this part, we explain the algorithms which can be
applied to coordinator and customer’s application.

Definition:

Dc = customer’s deadline for reservation resource
T = {T1, T2, …, Ti, … Tn} is a set of tasks in one transaction
P = {P1, P2, …, Pk} is a set of participants who give
reservation, briefly called candidates in this paper.

During the resource reservation collection period, F list is
formed.

F = {F1, F2, …, Fi, … Fn} list of candidates for task Ti

respectively.
F1 = { P1, P2, … Pm} (0<m<=k)
…
Fi = { P3, … Pm} (0<m<=k) is a set of candidates for task
Ti.
…
Fn = { Pm … } (0<m<=k)
n denotes the number of the tasks in one transaction
k denotes the number of candidates for all the tasks
m denotes the number of candidates for task Ti

- 998 -

제34회 한국정보처리학회 추계학술대회 논문집 제17권 2호 (2010. 11)

During the resource reservation phase, the coordinator
will collect result about which candidate for which task. And
Algorithm 1 can be applied to the coordinator’s module.

Algorithm 1: Resource Reservation Phase

Input:
Dc = deadline for reservation resource
T = {T1, T2, …, Ti, … Tn} is a set of tasks in one transaction

Start:
While (NowTime–StartReservationRequestTime < Dc)
 Foreach Ti in T
 If (Message==“Reserved” & ResoureNo== i)
 Push Pk into Fi
 k++
 ElseIf (Massage == “Exit” & ResourceNo == i)
 Delete Pk from Fi
 k++
 EndIf
 EndForeach
EndWhile

It’s time to select the right Participants from those candidates
and decide the transaction to complete or not according to F
list. Algorithm 2 has the responsibility to do this job and it is
applied into customer’s application in the business logic
layer.

Algorithm2: Participant Selection from Candidates

Input:
F = {F1, F2, …, Fi, … Fn} list of candidates for task Ti

respectively
Fi = { … Pm…} (0<m<k) is a set of candidates for task Ti

Start:

Foreach Fi in F
If (Fi != NULL)

Select one Participant Pm according to business rules
(e.g. select the cheapest one and deselect ones that
concurrent conflict with other transactions exists)

Inform Coordinator to send Pm “Complete” message

Inform Coordinator to send other candidates “Cancel”
messages

ElseIf
If (Ti is necessary in T) /*Check business rules*/

Inform Coordinator to send every Pm in P “Cancel”
message

ElseIf
Continue

EndIf
EndIf

EndForeach

6. Conclusion and Future Work

In this paper, we propose a transaction framework
extended from WS-Tx, which is specifically designed for
timely web service transaction. In order to solve the late
problem of tasks in a transaction, we raise our idea of
resource reservation with a deadline. In addition, the
providers who are suffering from concurrent conflict can be
perceived by the customer during reservation phase. So that
transaction can avoid waiting and delay. Finally, we achieve
the goal of minimizing the number of compensated
transactions due to missing deadlines.

However, we don’t consider about nested web service
transaction. And we simply take the top transaction for our
research and the deadline is given by customer. In the future,
we will work on adaptively scheduling for business
transaction including all or part of its nested sub-transactions.

Reference

[1] Sandeep Chatterjee, James Webber, Developing
Enterprise Web Services: An Architect's Guide. Prentice Hall
PTR, 2003, pp. 272.

[2] IBM, BEA Systems, Microsoft, Arjuna, Hitachi,
IONA,” Web Services Transactions specifications”,
http://www.ibm.com/developerworks/library/specification/w
s-tx/.

[3] OASIS Web Service Coordination (WS-Coordination)
Version 1.2, http://docs.oasis-open.org/ws-tx/wstx-wscoor-
1.2-spec-os.pdf, 2009.

[4] OASIS Web Service Business Activity (WS-
BusinessActivity), http://docs.oasis-open.org/ws-
tx/wsba/2006/06, 2009.

[5] Wenbing Zhao, L. E. Moser, P. M. Melliar-Smith, "A
Reservation-Based Coordination Protocol for Web Services,"
icws, pp.49-56, IEEE International Conference on Web
Services (ICWS'05), 2005

[6] M. Alrifai, W.-T. Balke, P. Dolog, and W. Nejdl,
“Non-Blocking Scheduling of Web Service
Transactions,” Proc. European Conf. Web Services (ECOWS
'07),2007.

[7] Mohammad Alrifai, Peter Dolog, Wolf-Tilo Balke,
Wolfgang Nejdl, "Distributed Management of Concurrent
Web Service Transactions," IEEE Transactions on Services
Computing, vol. 2, no. 4, pp. 289-302, Oct.-Dec. 2009,
doi:10.1109/TSC.2009.29

[8] Aziz Nasridinov, KyongWook Kim and JeongYong
Byun. “A Semantic Services Selection with Functional-Level
Mediator in SOA”. Proceeding of International Conference
on Semantic Web and Web Services, SWWS2009,
WORLDCOMP09’, Las Vegas, Nevada, US.

- 999 -

제34회 한국정보처리학회 추계학술대회 논문집 제17권 2호 (2010. 11)

