Annual Conference of KIPS (한국정보처리학회:학술대회논문집)
- 2010.04a
- /
- Pages.393-396
- /
- 2010
- /
- 2005-0011(pISSN)
- /
- 2671-7298(eISSN)
DOI QR Code
Non-linear Normalization for Pair-wise Discrimination Based On Local Contribution Measure
유사 문자쌍 구분을 위한 지역적 공헌도 기반 비선형 정규화
- Ryu, Sang-Jun (School of Computer Science and Electronic Engineering, Handong Global University) ;
- Kim, In-Jung (School of Computer Science and Electronic Engineering, Handong Global University)
- Published : 2010.04.23
Abstract
지금까지 필기 변이를 완화하기 위한 다양한 비선형 정규화 방법들이 제안되었으며 실제 인식 시스템에서 상당한 인식률 개선 효과를 나타내었다. 그러나, 필기 한글 인식에 있어서는 필기 변이 외에도 문자간의 높은 유사도로 인해 높은 인식률을 얻는데 어려움을 겪고 있다. 한글과 같이 문자간 유사도가 높은 언어를 효과적으로 인식하기 위해서는 필기 변이를 흡수하는 것뿐 아니라, 유사 문자간의 차이를 정확히 찾아내어 그 차이점을 부각시키는 것이 요구된다. 본 논문에서는 유사 문자간의 차이점을 부각시킬 수 있는 비선형 정규화 방법을 제안한다. 기존의 비선형 정규화 방법들이 영상의 지역적 복잡도를 균일화 함으로써 정규화를 수행했던 것에 반해, 제안하는 방법에서는 유사 문자쌍의 구분에 있어 지역적 공헌도에 기반하여 영상을 정규화한다. 즉, 유사 문자쌍 구분에 공헌도가 높은 지역은 확대하고 그렇지 않은 지역은 축소한다. 그 결과, 문자간에 서로 상이한 지역을 강조 함으로써 유사 문자쌍에 대한 구분력을 높인다. 실험 결과, 제안하는 방법으로 정규화된 영상에서는 유사 문자쌍의 차이점이 확대되었으며, 문자쌍의 구분 성능 또한 향상되었다.
Keywords